REPORT R-787 SEPTEMBER, 1977 UILU-ENG 77-2234

A COMPUTER HARDWARE
DESIGN LANGUAGE FOR
MULTIPROCESSOR SYSTEMS

TREVOR NIGEL MUDGE

"
L

UILU-ENG 77-2234

A COMPUTER HARDWARE DESIGN LANGUAGE
FOR MULTIPROCESSOR SYSTEMS

by

Trevor Nigel Mudge

This work was supported in part by the Joint Services
Electyonics Program (U.S. Army, U.S. Navy and U.S. Air Force)
under Contract DAAB-07-72-(C-0259.

Reproduction in whole or in part is permitted for any

purpose of the United States Government.

Approved for public release. Distribution unlimited.

A COMPUTER HARDWARE DESIGN LANGUAGE FOR
MULTIPROCESSOR SYSTEMS

BY
TREVOR NIGEL MUDGE

B.3¢c., University of Reading, 1969
M.5., University of Illinois, 1973

THESIS
Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1977

Thesis Advisor: Professor Gernot Metze

Urbana, Illinois

A COMPUTER HARDWARE DESIGN LANGUAGE FOR
MULTIPROCESSOR SYSTEMS

Trevor Nigel Mudge, Ph.D.
Coordinated Science Laboratory and
Department of Computer Science
University of Illinois at Urbana-Champaign, 1977
This thesis develops a computer hardware design language that:
1. Has sufficient scope to describe multiprocessing systems.
2. 1Is specified so that syntactically correct programs describe
systems which have deadlock-free control structures.

This, it is shown, is accomplished without resorting to an unduly
complex syntax for the language.

The control problem associated with multiprocessing is quite complex,
and the opportunities for creating a control structure which can hang-up
are great. Specifying the computer hardware design language so that this
pitfall can be avoided by staying within the bounds of the syntax, gives
the user a true design tool which is more than just an aid for documenting
the principles of operation of a system.

The computer hardware design language is capable of being used to
design digital systems which conform to the following model: the system
partitions into a hierarchically organized asynchronous control structure
and a data structure. Actions in the data structure are assumed to be
representable as register-transfers. The coordination of these actions is
accomplished by the control structure.

Two approaches to the implementation of the computer hardware design
language programs are discussed., The first is an asynchronous realization
using asynchronous modules., The second is a pseudo~asynchronous realization:

it is a synchronous realization that is viewed as an asynchroncus one.

iii

ACKNOWLEDGMENT

I would like to thank my advisor Professor Gernot Metze for his
support and guidance, and James Smith, Ravi Nair, and B. Kumar for many
useful discussions. Further, I would like to thank Janet Van Weringh and
Janet Van Valkenburg for typing the rough draft, Mrs. H. Corray for typing
the final draft and Robert MacFarlane and Alan Wier for producing the
drawings. Finally I would like to thank Jean Dussault, Scott Woodard,
Alan Gant, Joel Emer, William Kaminsky, Daniel Hammerstrom, William
Davidson, Satish Thatte, and Professors Edward Davidson, Jacob Abraham
and Richard Flower for making my stay in the Digital Systems Group an

enjoyable one.

"An ounce of prevention is
worth a pound of cure."
~Proverb

o

INTRODUCTION

TABLE OF CONTENTS

1.1 The System Model Presumed by the CHDL vvrveverernnnn. .
1.2 The Plan of the Thesis chesesieen cecssssesssesn
BEHAVIORAL DESCRIPTIONS OF THE CS MODULES cssesess
2.1 The Petri Nef Graph .veveescceccennennnnns .. cesesenns
2.2 The Source Module ..o..veeevennannns cseessesseaaces .
2.3 The Sink Module C et esescecaensecsassouno s e o
2.4 The Wye Module Cetesenseanns ceveseaonaons
2.5 The Sequence MOdULE .e..uitononnaneeerenerenoneneeonsns
2.6 The Trigger Module Sesecccsensscansesonesae
2.7 The JuUnction MOdULE .euveveuerensoooecononneonenensonses
2.8 The Shared Resource MOAULE .u.uv.oeeoencnooeesoncecneses
2.9 The Mutual Exclusion Moduleieescooeeoccecooecnnns
2,10 The Decode MOAULE e erveenencoonsnsenconseoenensoss
2.11 The Iterate MOAULE ..veverenuoeeenonocnnaonens ceeocaaan
2.12 The Behavior of Networks of CS ModUles .uueseeeveneons.
2.13 Comments on the Modules cecesesesenesacuae ceesse
THE SYNTAX OF THE CHDL wovevvoceenononne S esesenesecacenco o P
INTERPRETING AND TRANSLATING PROGRAMS TN THE CHDL +vevenoo. .
4.1 The Process BLlockeoevenen.n. N e ceescensaa
4.2 The Decode Process BLlock ..ueevevseeoecnene. e creese
4.3 The Mutual Exclusion Process BLOCK veeevveneons cesses
4.4 The Trigger Process BLoCK veveevwcesvonn. veesecrasarvene
4.5 The While Process Blockvweevenownn crenncasnennrnns o
4.6 The Inter Block Connections .evee.eeeesss. e esenaes o
4.7 Comments on the BloCKS ..iiiecicueoreooencenoeososonans
AN EXAMPLE DESIGN USING THE CHDL vevuswon tseacscusaacns oseosnsa
5.1 The Forwarding Algorithmeeenosn.. Cetetacearasans .
5.2 The CHDL Program for the Example Desifh vevvevevssvens
5.2.1 The MAIN BIlOCK tutivinuinreenenoennonnnnnnns .o
5.2.2 The FETCH BIOCK 4uveruuoennerennnenennennnans .

58
58
63
71
71

Vi

3.2.3 The EXEC Block cevieceavennns sabesscsenecseonsnn
5.2.4 The TST BloCK cuveeeivernncannncnoennnnnss casans
5.2.5 The Blocks TF1l and TF2veievnenn. sheesacunae
5.2.6 The Blocks PREDCDL and PREDCDZ2..vevvovens esesess
5.2.7 The Block DBUS «..vvvnnn. ceecanas cesesecesscenas
5.2.8 The Blocks DECA and DECB ... rvnoreconen teaeens
5.2.9 The Blocks RAL and RBi ...vvrvnennnnn. ceemae e
5.2.10 The Blocks MVAL and CHKAL cuevvivernennecennns oo
5.2.11 The Blocks BSYAi and CHKBALI e seeesasus
5.2.12 The Blocks MVBi and BSYBi cesessna esees e .
5.2.13 The Blocks DCDEEXL and DCDE&EX2 eevevncocenenovans
5.2.14 The Blocks BCASTL and BCAST? .cuveveosans ceeessos
5.2.15 The Remaining Blocks c..iceevornn. ce s snas cresese
5.3 Comments on the Example Design .e...oveees. cecereenaas .o
THE SCOPE OF THE CHDL ¢vvvvennnneeeennneennneeonannneen ceeas

PROOF THAT SYNTACTICALLY CORRECT CHDL PROGRAMS DESCRIBE

SYSTEMS WHICH HAVE DEADLOCK-FREE CSS .u.evceon. DI cesens
7.1 The Additional Syntaxc... cecaaens cevasaens N
7.2 The Proof .o iiinneoanseonncnonns s ieesecesanascnnea

Program c.eevues ceasessssesessesne coaseses sessescocsns e

7.3.1 Checking a CHDL Program Against the Syntax

of Chapter 3.....ceieinceaneenns cesuese ceases ase

7.3.2 Checking for ASI and ASZ ...vivreerinennnenones .

7.3.3 Checking for AS3 and AS4cevvnen.. esensns .

7.3.4 Checking for AS5 and AS6 ... cvnvevennnn ceeesans

7.3.5 Checking for AS7 and AS8 ...t innnnennn cee

7.3.6 The Overall Complexifyecce.. ceeieranae oo

7.4 Concluding Comments cecssescsocccontocacsc s ne
HARDWARE IMPLEMENTATION OF THE CHDL PROGRAMS crsesannns
8.1 Asynchronous Implementation cesesanen e veee

8,2 Pseudo-asynchronous Implementation ee.ec.eoo.. cosvessans

78

80

80
81

a8

89
93
95
96
96
97
97

vii
Page
9. COMPARISONS TO QTHER CHDLS AND OTHER APPLICATIONS ..vvvevsnocn 126

9.1 Other Applications I T T T T N 126

9.2 Comparisons to Other CHDLs S T T S 127
10. CoNCLUSTON R T T T T 129

REFERENCES 131
T T T T T T L34

VITA R T I T 135

«

1. INTRODUCTION

In an attempt to formalize the design process for large digital
systems, many researchers have suggested the use of computer hardware design
languages (CHDLS)*. However, using a CHDL does not necessarily facilitate
the design process. An ill conceived language can encumber the design
process and fail to guide it away from design errors. Such a CHDL then
becomes useful only as a documentation aid. It is our belief that most
CHDLs fall into this category, and it is interesting to note that one of
the most popular CHDLs, called ISP [Bel 71], started out as such.

The two purposes of this thesis are:

1. To develop a CHDL with sufficient scope to describe
multiprocessing systems.

Z. To specify the CHDL so that syntactically correct programs
describe systems which have deadlock-free control
structures {(CSs).

The control problem associated with multiprocessing systems is, in
general, quite complex, and the opportunities for creating a CS which can
hang-up are great. Specifying the CHDL so that this pitfall can be avoided
by staying within the bounds of the syntax, gives the user a true design
tool which is more than just an aid for documenting the principles of
operation of a system.

The two aims stated above are to some extent opposing. The first
requires that the CHDL have many constructs, and the second that it have

few (if the view is taken that restricting the language also restricts its

ability to describe undesired objects). However, any compromise reached

*Two comprehensive guides to literature on this topic are [Fig 73] and
[Bar 75]. A recent collection of papers can also be found in [Pro 75].

is bound to be unsatisfactory from some viewpoint, and in our case a very
similar situation exists to the one highlighted by Knuth in [Knu 741, con-
cerning goto-less structured programming., He points out that although
goto-less structured programming retains completeness while enhancing the
potential for error-free programming, some algorithms can only be realized
in a clumsy way. By analogy, although our CHDL is in some sense complete
and aids error-free design, some control algorithms can only be realized

in a clumsy way.

1.1 The System Model Presumed by the CHDL

In multiprocessing where there are often several independent processes
active simultaneously that must be coordinated and synchronized without
being unnecessarily bound together, the most natural model for a CS is an
asynchronous one. This is the one we have used.

The CHDL is capable of being used to design digital systems which
conform to the following model: the system partitions into a hierarchically
organized CS and a data structure (DS). Actions in the DS are assumed Lo
be representable as register-transfers. The coordination of these actions
is accomplished by the CS. The register transfers themselves are initiated
by request (R) signals, which issue from the CS and travel over bidirectional
signal paths called links to the DS. Upon their completion acknowledge (A)
signals are transmitted back along the links to the CS. To enable the CS
to test bit values in the DS,a second type of link, called a conditional
link, is needed. These links carry three signals; a test (T) signal that
goes from the CS to the bit to be tested, and two result signals (Il and
IO),one of which is transmitted back along the link to the C5, depending

on whether the bit was 1 or 0. The system model is shown in Figure 1.1.

Links Condiﬂongf Links
Y g v

> Control -

. Structure .

. (Network of .

. | Asynchronous .

Modules) -
o
- e
RIJA « e RI|A TIlio--.TIlIO
Y \ \
A
- Register 1 Bit Field

Output | e
from a
Register
ora
Functional
Block

Data Structure
FP-5571

Figure 1.1. The System Model.

Controlling Link
g

Functional .
Block of A

Combinational
/1“ Logic
Derived
from
APL ®
Expression

Destination F:
Register

In the simplest case a single source
register feeds the destination register.

Source
Registers

FP-5572

Figure 1.2. Register-transfer Logic.

The CHDL translates to a collection of asynchronous CS modules inter-
connected by links to form a network which constitutes the CS of the target
system. There are ten different types of CS modules, any number of which
can be used to form the network,

The register-transfers controlled by these networks are also described
by the CHDL. They have the form

D & g
where D is the name of a destination register, and S is an APL expression
whose arguments are taken to be registers in the DS. From the standpoint of
the CS these expressions can be regarded as functional blocks of combi-
national logic. Figure 1.2 illustrates a register-transfer in more detail.
The actual structure and design of the functional block is not specified by
the CHDL. That is assumed to be taken care of off-line, possibly by another
program which forms part of a CAD set-up. Such programs are discussed by
Friedman in [Fri 67] and [Fri 69].

To describe the operation of systems conforming to this model it is
convenient to use the undefined term "process'. This is meant to be some
activity in the target system that is initiated with a request signal and
terminates with an acknowledge signal. The operation of any system specified
by the CHDL can then be regarded as a process which decomposes into other less
complex processes. These in turn decompose until finally the operation of the
system can be viewed as a collection of atomic processes =~ the register-
transfers that are coordinated by the CS. This hierarchical structuring of
processes corresponds to the hierarchical organization of the CS. Communi-
cations over links between hierarchical levels in the CS correspond to the
initiation and termination of processes. We4shall see later that the dif-
ferent levels of control are a natural consequence of the block structured

nature of the CHDL.

1.2 The Plan of the Thesis

This thesis is arranged as follows.

Chapter 2 introduces the ten (S modules and defines their behaviors
using Petri net graphs. It also gives rules for interconnecting these
graphs so that the behavior of networks of CS modules can be deduced.

Chapter 3 presents the syntax of the CHDL as a set of production
rules, together with some terminology to enable iater discussion about
objects in the syntax.

Chapter 4 gives an interpretation of the CHDL in terms of process
behavior, and a procedure for translating programs in the CHDL into net-
works of €S modules. These two things are related using the Petri net
graphs of Chapter 2.

Chapter 5 illustrates the use of the CHDL by presenting the design
of a small system. The system is a processor which executes register-to-
register instructions. These operate on a DS of four registers and two
multi-purpose function units. The €S is implemented as a forwarding
algorithm to achieve instruction execution look-szhead. Such an example
has many of the control requirements of a typical multiprocessor system.
Thus it illustrates well the capabilities of the CHDL.

Chapter 6 discusses the scope of the CHDL. Due to the acknowledged
scope of APL to characterize the functional aspects of the DS, the scope
of the CHDL is examined from a CS viewpoint. An indication of its
completeness is made, and it is concluded that the first purpose of this
thesis has been met.

Chapter 7 introduces some additional syntactic requirements. Then
it is proved, using a method for characterizing the behavior of networks

of CHDL blocks, that syntactically correct CHDL programs (i.e. ones that

satisfy the syntax of Chapter 3 plus the additional syntactic requirements)
describe systems which have deadlock-free CSs. Computational complexity
arguments show that checking the syntax (excluding the APL expressions of
the register-transfers) is very simple. Thus, freedom from deadlock can
be achieved without complicating the syntax of a CHDL or limiting its
scope (this last point from Chapter 6). It is concluded that the second
purpose of this thesis has been mel, without resorting to a complex syntax.

Chapter 8 discusses two approaches to the implementation of the CHDL
programs in hardware. The first, based on the asynchronous model of
Chapter 1, discusses constructing the CS modules from logic gates and then
constructing the functional blocks of the DS with additional logic to
generate acknowledge signals. The second discusses a very natural
synchronous realization, which employs a finite state machine for the (S
(realizable as a PLA and a set of flip-flops) and a bus structured DS.
This approach is shown to overcome the drawbacks associated with requiring
parts of the DS to generate acknowledge signals, while retaining many of
the advantages of an asynchronous CS.

Chapter 9 mentions other applications of some of the ideas mentioned
in this thesis and compares our approach to CHDLs with others.

Finally in Chapter 10 some concluding remarks and suggestions for

further research are made.

2. BEHAVIORAL DESCRIPTIONS OF THE CS MODULES

In this chapter the behaviors of the CS modules are defined. (The
actual implementation of these behaviors is not discussed until Chapter 5.)
The behavior for each module is defined by means of a Petri net (PN) graph
[Pet 66] [Hol 68], and rules are given for interconnecting these behavior
graphs so that the behavior of networks of interconnected €S modules can

be deduced.

2.1 The Petri Net Graph

The following definition of a PN is similar to that found in [Hei 76].
A PN is a four-tuple <P, T, A, MO> where
P is a non-empty set of distinctly labelled places
{pyseeesp)
T is a non-empty set of distinctly labelled transitions
{tl,...,tm}
A is a relation, A ¢ (PXT)U(TXP)
MO is the initial marking.

A marking, M, for a PN is a function M: P+7Z, where Z is the set of
non-negative integers. M(p) is referred to as the token load of the place
p or as the number of tokens on p.

PNs are conveniently represented as directed graphs. Places and
transitions are the nodes of the graph and the directed arcs show the
relation A. The graph is bipartite since each arc connects a place (or
transition) to a transition (or place). Tokens are represented as dots in
the place nodes. If Py is a place and tj is a transition and if <pi’tj>
belongs to A, then Py is an input place of tj and tj is an output tran-
sition of p;. Similarily, if <tj,p£> belongs to A, tj is an input tran-

sition of Py and Py is an output place of tj'

Figure 2.1 shows an example of a PN. For this example, the
relation A is:
= {< > < > < > < > < >
A t pl’tl s p4’tl s Pzatz > pS’tZ 5 P3at3

< 2> < > < > < > < >
tlipz b t23p3 b t3)p4 3 t3>p1 3 € }

3°Ps
The marking shown has value 1 for places Pi> Py and Ps and value 0 for
places Py and Py-

So far we have defined the static properties of PNs. Next we define
the dynamic properties of PNs. It is the dynamic quality of PNs that make
them ideal models for asynchronous processes.

A tramsition in a PN is enabled if each of its input places contains
a token. An enabled transition can fire, which transforms the marking of
the net by removing one token from each input place of the transition and

adding one token to each output place of the transition. Clearly, a

sequence of transition firings, a firing sequence, causes a sequence of

marking transformations.
The following procedure which characterizes the dynamic quality of
a PN is called simulation.
1. Compute the set of enabled transitions (U).
2. Choose one transition t, ¢ U.
3. Fire t.
4, Go to 1.
Consider the example of Figure 2.1. 1If the markings are represented
as vectors of length 5, then the marking shown is (1,0,0,1,1) where the order
from left to right is Pis Pys Pgs P> Pge Simulating this simple example

generates a single cyclic firing sequence:

51 to 5
(1,0,0,1,1) =+ (0,1,0,0,1) =+ (0,0,1,00) =+ (1,0,0,1,1)

10

FP-5467

Figure 2.1. An Example PN.

11

t
The notation M * M' is meant to indicate that firing transition t trans-

forms the marking M into M'. This notation can be extended to sequences
of transitions, leading to the following definitions:

o . a
A marking Mj is reachable from Mi if 4 a sequence g€ T* 2 M, - Mj

_’
The forward marking class M of a marking M is the set of markings reach-

able from M.
S’i’= {M'|[do€ = andMiM'}
A transition (place) is dead for the marking M if 7 M' ESL the transition
(place) is disabled (does not contain a token).
A PN =<P, T, A, M6> is safe if M(p) <1 VVPE_f
and VMEMO
A PN is live 1if V Mﬁiﬁo no transition (place) is dead

These last two definitions will be used later (in section 7) to
define a deadlock~free CS.

Figure 2.2 shows how we will use PNs to model processes in digital
systems. Processes are associated with places, and their occcurrence with
tokens in those places. 1In the example of Figure 2.2 the onset of process
P is indicated by the firing of transition R. This causes a token to be
deposited in p. The presence of a token in p indicates the occurrence
of process P. The termination of P is indicated by the firing of A, and
the resulting removal of the token from p.

The labels R and A for the transitions which demark the process P
were intentionally chosen to correspond to the request and acknowledge
signals used on the links postulated in the system model of section 1.
Now it can be seen how PNs can be used to model the behavior of digital

processes controlled by links: the transmission of a request signal from

The Process Controlling

Process P
(@)~
_/

R) A

o)}

\/

. §

»taProcess P

O

:

Figure 2.2. A PN Model of a Process.

Process P is
Not Occurring

Process P
is Occurring

FP-5468

13

the controlling process down the controlling link corresponds to the firing
of the transition R, and when the process (P) controlled by the link is
completed, the transmission of the acknowledge signal up the link corre-
sponds to the firing of transition A. (The link is viewed as an output
link by the controlling process, and an input link by process P.)

Since a single link may control a complete subsystem, the occurrence
of a process, such as P in our example, may be interpreted as the initiation,
running and termination of a subsystem, which itself may be composed of a
collection of other processes. If the PN which defined the behavior of
this collection of processes, or subsystem, were substituted for P, a
new PN would result representing a more detailed account of the system
behavior.

We are now in a position to define the behaviors for the ten CS

modules.

2.2 The Source Module

The source (So) module is shown in Figure 2.3. On the left is a
diagrammatic representation. It has one output link, which is shown as
an input acknowledge (A) signal line and an output request (R) signal
line. On the right is a more concise diagrammatic representation of the
module, This time the link is represented by a single directed arc,
directed in the direction in which the request signal travels. (This last
convention will be used throughout the remainder of this discussion.) In
the center is the PN graph of the So module with its initial marking. By
simulating this PN the behavior of the module can be deduced. The occurrence
of a request signal on the request signal line is indicated by firing
transition R, and the occurrence of an acknowledge signal line is indicated

by firing transition A. (In later sections subscripts are used to denote

14

the link to which the signal belongs.) From the PN it can be seen that
the module transmits a request signal initially, and then retransmits a
request signal whenever an acknowledge signal is received. It thus acts

as a source of requests.

2.3 The Sink Module

The sink (Si) module is shown in Figure 2.4. 1In operation it
complements the So module. Whenever it receives a request signal it
transmits an acknowledge signal. It thus acts as a sink for requests.
Notice its PN is identical to that for the So module. However, in the
So module the request is an output signal and the acknowledge an input

signal. In the Si module the converse is true.

2.4 The Wye Module

The wye (W) module is shown in Figure 2.5. By simulating the PN

it can be seen that when a request is received on link 1 (Rl)’ requests
are transmitted on links 2 (Rz) and 3 (RB) both. When an acknowledge
signal is received on both links 2 (Az) and 3 (A3) (in any order) an
acknowledge is transmitted on link 1 (Al). Thus a W module may be used
by a process to simultaneously initiate two other processes. Only when
both of these processes are completed (i.e. when the module has received
acknowledge signals on links 2 and 3) is the controlling process notified

by the transmittal of an acknowledge along link 1.

2.5 The Sequence Module

The sequence (S) module is shown in Figure 2.6. By simulating the
PN it can be seen that when a request is received on link 1 a request is
transmitted on link 2. When an acknowledge is received on link 2 a

request is transmitted on link 3, Finally an acknowledge on link 3 causes

7
]

15

-

=<

Figure 2.3.

The Source Module.

Figure 2.4.

The Sink Module,

So

FP~5469

16

>

Py
—
H

R3 B | ——**)’F?Z
W o R W —
Az] ft—— A,
B
A
Controlling
Process
Ry

z
f

y
\ Rs S A A R, A
1 y
d) Controlled d)
Processes
. A)

FP-5470

Figure 2.5. The Wye Module.

17

Ay R, 1
S S o 2
o Az
Ay R 3
Al Ep—
‘ .
P Controlling
Process
Ry
R
Az
. Controlled
Processes
Rs
Ayt }
FP~ 5471

Figure 2.6. The Sequence Module,

18

an acknowledge to be transmitted on link 1. Thus the S module may be used
by a process to initiate two processes one after the other. The controlling
process requests on link 1 whereupon the process controlled by link 2 is
performed. On its completion the process controlled by link 3 is performed,
and an acknowledge is returned to the controlling process,

The temporal sequencing between the processes controlled by links 2
and 3 is indicated in the diagrammatic representation of the module at the
top right of Figure 2.6. Link 2 is shown with a circle at its base, indi-
cating that the process that it controls precedes in time that controlled
by link 3. These two links are called the primary and secondary output links

of the S module.

2.6 The Trigger Module

The trigger (T) module is shown in Figure 2.7. By simulating the PN
it can be seen that its behavior is similar to that of the S module, except
that control is returned to the controlling process as soon as the process
controlled by link 2 is completed. Hence the controlling process and the
process controlled by link 3 can overlap in time (they can both have tokens
in their respective places). However, the controlling process can never get
more than one occurrence ahead of process 3 (we shall adopt the convention
of labelling processes the same as the links associated with them, unless
otherwise indicated), as process 2 cannot be reinitiated until process 3 is
completed.

Thus the T module implements the basic control mechanism for an
assembly-line station platform (called a trigger [And 67]), in a chain of

processes that process data in a pipeline, or assembly-line fashion.

19

Ay R, 1
SN . RZ
T T O D
-4——-—A2

.......).
B
(N]

Y a
v
Controlling ®
Process
Ry
A
J Rp
N
A, —
Controlled
S C‘) s Processes
A
R
_/
Ay A A
FP—5472

Figure 2.7. The Trigger Module.

20

2.7 The Junction Module

The junction (J) module is shown in Figure 2.8. 1Its operation can be
viewed as the dual of the W module. It may be used by two controlling
processes to initiate a third process. The controlling processes request
over links 1 and 2., The third process is controlled by link 3, and is not
initiated until both the controlling processes have requested it. The
module thus performs an act of synchronization between two concurrent
processes, before initiating a third. When the controlled process is

completed it broadcasts an acknowledge to both the controlling processes.

2.8 The Shared Resource Module

The shared resource (SR) module is shown in Figure 2.9. It can be
thought of as a module for allowing two processes to share some other
process (their common resource).

If a request is received on link 1 then process 3 is initiated. When
this is completed an acknowledge is received on link 3 and an acknowledge
is transmitted along link 1, Similarily if the request is received on
link 2. Thus either of the controlling processes can gain control of
process 3, If requests on link 1 and 2 overlap (i.e. requests occur omn
links 1 and 2 without an intervening acknowledge on link 3) they are still
handled in the order in which they arrive. If they occur simultaneously

they are handled in arbitrary order.

2.9 The Mutual Exclusion Module

The mutual exclusion (ME) module is shown in Figure 2,10. Controlling
process 1 can gain control of process 3, and controlling process 2 can gain
control of process 4. The module imposes mutual exclusion on these two

otherwise unrelated transfers of control. 1In other words, if process 1 has

21

Rl e -4———-R2
J 1] J et
Ay —r 0\
a Y e
4 4

C.) Controlling
Processes

Controlled
Process

FP—-5473

Figure 2.8, The Junction Module.

22

Ry — le— Ry
SR 1 — SR te—2
Ay ~— —— A,
Az R3 3
Controlling
4 Processes N

“—— Controlled
Process FP-5474

Figure 2.9. The Shared Resource Module.

23

A, Ry Ay Ry 2 1
L ! |
ME ME
Iy I l l
As Rqa As Rs 4 3
A, —T A,
4

Controlling
Processes

Controlled J

Processes FP-5475

-~

Figure 2,10, The Mutual Exclusion Module.

24

control of process 3, 2 cannot gain control of 4 until 1 releases 3. If
both processes 1 and 2 simultaneously seek control of processes 3 and 4
regpectively, then one pair is preferred and it is chosen arbitrarily.

The ME module allows two processes (1 and 2) to share common parts of
the DS (controlled by processes 3 and 4 respectively) while maintaining the
determinism of those processes.

Both the ME module and the SR module exhibit mutual exclusion between
two processes. This behavior is achieved by the place S (see Figure 2.9 and

Figure 2.10) which is analogous to a binary semaphore initially set to 1.

2.10 The Decode Module

The decode (D) module is shown in Figure 2.11. A controlling process
requests on link 1. This request is transmitted on link 3 or 2 depending
on whether the external boolean variable x is 1 or 0. The acknowledge is
returned in the usual manner. Thus the D module may be used as a branch
point in a CS. The branch is controlled by the bit x.

In the diagrammatic representation of the D module at the top left of
Figure 2,11 the link used to test x is shown as a conditional link. A signal
is transmitted on line T to test the bit and is returned on either Il or IO
depending on whether x is 1 or 0, The testing occurs every time the module
receives a request on link 1. The more concise diagrammatic representation
of the module in the top right of Figure 2.11 distinguishes the link through
which control flows if x is O by the circle at its base. The module is
labelled D(x) to identify its function (decode) and the name of its argument
(x in this case).

The signals of the conditional link are not explicitly modelled as

transitions in the PN graph. Instead the test and its result are modelled

by a free-choice node, place £ (see [Pat 72] for further explanation of the

25

Ay Ry 1
R3 B amm -—-—-—FRQ
D 3 D(X) O D
Az ——3] s [>
I; 1o T
N Y
Y
Controlling
Process
\. Controlled J
Processes

Figure 2,11. The Decode Module.

FP~5476

26

term free-choice). A token in f can fire either R2 or R3 but not both.

This allows for both possible mutually exclusive outcomes of the test.

2.11 The Iterate Module

The iterate (I) module is shown in Figure 2.12. A controlling process
requests on link I. If the value of the external boolean variable x is 0 an
acknowledge is transmitted back along link 1. If x is 1 the process con-
trolled by link 2 is initiated by transmitting a request on link 2. When
process 2 is completed an acknowledge is received on link 2, and if x is
still 1 a request is retransmitted on link 2 reinitiating process 2. This
reinitiation continues as long as x is 1. 1If an acknowledge is received on
link 2 when x is 0, process 2 is no longer reinitiated. Instead an acknow-
ledge is transmitted on link 1 back to the controlling process., This module
may be used in a CS when a process is required to be reinitiated as long
as some external bit is 1.

The link used to test x is a conditional one, similar to the one
used by the D module. It is also modelled by a free-choice node (place £},
Similar to the D module, the more concise diagrammatic representation of
the module shown at the top right of Figure 2.12 is labelled I(x) to identify

its function (iterate) and the name of its argument (x in this case).

2.12 The Behavior of Networks of CS Modules

We are now ready to present an algorithm, which allows us to construct
the PN graph representing the behavior of networks of CS modules, from the
PNs of the individual nodules given in the last ten subsections.

Two cases must be taken into account by the algorithm. In the first,

an output link of one network of modules is connected to an input link of

27

fT. Ry 1
b T
I 1o I(X)
— 1
Az R 2
JL.Al

y
e (e
R1
f
R2
Controlled
Process

X A

FP-5477

Figure 2.12. The Iterate Module.

28

another network of modules, to form a larger single network. 1In the second,
an output link of a network is connected to an input link of that same net-
work, to produce a slightly different network.

In both cases, the construction algorithm can be described informally
as follows (see Figure 2.13; PNl may be the same as PNZ):

L. Discard p and q together with their input and output arcs.

2. Combine Rl and R2 into a new transition, kR, such that the

input arcs to A, are those that were inputs to R, and the

R 1

output arcs are those that were outputs of RZ.
3. Combine Al and A2 into a new transition, KA, such that the

input arcs to XA are those that were inputs to A2 and the

output arcs are those that were outputs of Al'

More formally:

Construction 2.1:

Case 1 (PN} # PNZ)

= < >
Let PNl Pl’ Tl, Al’ MO
= <
PN2 PZ’ Tz, AZ’ Mg>

And let the result of the joining be

PN = <P,T,A,M>
Then

P=P UP, - {p,q}

T=T, 0T, U, - R, AL Ry,)

A=A UA - (<A, R, P, <q, R, <Ay, @)
if Rl’ R2 are renamed AR and Al’ A2 are renamed KA.
M'VpéPlﬂP

M (p)=

Mi YV pe P2 Np

29

Output Link

K_A——\ PNy
Ay p R

R 4 A
L‘V*'j

Input Link PN2

FP-5478

Figure 2.13, Joining Two Networks.

30

Case 2 (PNl = PN
P =P - {p,q}

T

il

T, U D, AA} - {r}, ARy, Az}

1> as are Al and AZ'

= - > < < > <
a=ap - e, 47, R, P, <q, R, <A, @)

R, and R2 are both in T

i A
if Rl’ RZ are renamed kR and Al’ A2 are renamed A

1
MU T p#gq

[

M _(p)
© 0 else

The A transitions are called internal transitions, since they do not
correspond to a signal entering or leaving the network of modules. With
respect to the external behavior of a network of modules, the firing of
this type of transition can be ignored. (Although the transition itself
may be necessary, for coordination purposes, to ensure that the correct
sequences of signals are modelled.) Hence the following two sequences of
transitions associated with PN graphs for networks of modules are regarded
as equivalent, from a behavioral point of view:

R, R, A, A, A_ XA R

L7273 74 576 77
R, R, AL R

17275 77

This leads to the two simplifications shown in Figure 2.14. Applying
either of these simplifications to a PN does not alter the behavior that it
models. The one at the top of the figure is straightforward: the place p
and its input and output arcs are removed, then transitions 3 ' and A" are
consolidated into a new transition A. The input places to M are those which
went to A' and the output places of A are those which were fed by A", This
simplification can be applied only when the only elements of A in which p

occurs are <A',p” and <p,\'"™. The simplification at the bottom of the

figure is a little more complicated, and can be expressed in a more formal

31

B

Simplification 1

Simplification 2

FP-5479

Figure 2.14. Two Simplifications.

32

way as:
Remove from A Replace with
< > < > < >
Xl’ pl b pl) >\‘ <X1’ p1q1>’ lql’ Yl
<Xm’ pﬁ>, <pm, s <Xl’ plqﬁ>’ <plqn’ Yﬁ>
<>\»9 ql>: <q1> Yl> . » @
< >, < >
. . . X Ppdy”s “Ppdys Y
< > < > e . .
A G Ty Yn

L > >
Xm’ Py Prin? Yn
Remove {K} from T.

Remove {pl,...,pm,ql,...,qn} from P and replace with

{pyays Py9ys---p 4}

i
’-\
.

TEM () = 1= M (pyqy)se->M (Pyq)

il

il
pt
.

IEM (q) =1 =M (pra;).ss,M (P d;)
(Simplification 1 is just a particular case of Simplification 2.)
Both simplifications will be used in future sections to facilitate
arguments concerning the behavioral equivalence of networks of CS modules.
At this point it should be implicitly clear that our view of
behavior is one that equates the behavior of a network of CS modules with
the sequence of signals into and out of the network. This view has been
explored in depth in [Pet 73], where the properties of sequences modelled
by PNs are studied.
Figures 2.15 and 2,16 illustrate Construction 2.l. Figure 2.15 shows
case 1 and Figure 2.16 case 2. 1In Figure 2.15 two PNs representing W
modules are joined to form a three-output W module. At the top of the

figure the unsimplified result of the construction algorithm is shown,

33

Fp- 5480

Figure 2.15. Construction 2.1 (case 1).

34

(N =

As

Figure 2.16.

Construction 2.1 (case 2).

FE~-5481

35

and at the bottom the simplified result (apply Simplification 2 with m=1,
n=2 to kl’ then with m=2, n=l to Kz)a In Figure 2.16 the output link
3 of a network consisting of a W module, a T module and a J module is
joined to the input link 4. At the top of the figure the PN for the net-
work, before the links are joined, is shown. At the bottom of the figure
the PN for the networks, after the links are joined, is shown. The behavior
obtained by simulating this PN is equivalent to that obtained from simu-
lating the PN that defines the behavior of the S module (see Figure 2.56).
This leads to two observations. One, of incidental interest, that we can
construct an S module from a W, a T and a J module. The other, and more
important, that the PNs used to define the behaviors of networks of modules
need not have equivalent graphs to represent the same behavior. 1In other
words there is no unique PN graph associated with a particular behavior.
(However, there is a unique behavior associated with each network of
modules.) This deficiency could be rectified by following the ideas pre-
sented in [Jum 73]. Jump calls the PN graphs that are used in this dis-
cussion 'signal graphs'. He presents an algorithm for deriving another
PN graph, called the "behavior graph’, from a signal graph, which is unique
for a particular behavior. Although Jump confines his discussion to line
and safe marked graphs (a subset of the class of live and safe PNs), his
ideas could readily be extended to the class of all live and safe PNs.
Since our discussion will not go into very complicated arguments concerning
behavioral equivalence, this development, together with the additional
formalism, is unjustified,

One final point concerns liveness and safeness. Construction 2.1
case 1 will always result in a live and safe PN, if both component PNs

were live and safe to begin with. However, Construction 2.1 case 2 can

36

result in a PN which is not live and safe even though the original PN was
live and safe to begin with (consider a J module with its output and one of

its inputs connected).

2.13 Comments on the Modules

The modules presented here are now new. In embryonic form, many of
them can be found in [Mul 63]. All of them can be found in [Den 70], with
the exception of the SR module. (Even this can be formed from the A module
and the U module presented therein.) The SR module can be found in [Pet 74].
Further literature discussing the properties of some subset or another of
the modules also includes [Alt 69], [Alt 70], [Bru 71] and [Pat 72]. Other
sets of CS modules exist [Bel 72}, [Cla 67] and [Kel 74}]. Our set was

chosen because its members have a natural correspondence with the CHDL.

37

3. THE SYNTAX OF THE CHDL

Programs in the CHDL define digital systems by describing networks of
the CS modules presented in the previous chapter and the register-transfers
they control. Before going on to show how programs in the CHDL relate to
networks of these CS modules, we shall use this chapter to present the
syntax of the CHDL together with some terms that will be useful in later
discussions when referring to objects in the syntax.

Figure 3.1 gives the syntax of the CHDL in BNF (Backus-Naur form).
Non-terminal symbols are written as sequences of upper case letters.
Terminal symbols are underlined sequences of upper and lower case letters,
and special characters (brackets, commas, etc.). The terminals are listed
in Table 3.1 together with their subsequent representation, if it differs
from that shown in Figure 3.1. The following symbols also appear in

Figure 3.1.

They are meta-symbols belonging to the BNF formalism, and not symbols of the
CHDL. The first two should be familiar, and the curly brackets denote
possible repetition of the enclosed symbols one or more times. In general
{a} & alaalaaal. ..

By examining the productions it can be seen that a program (represented by
non-terminal PROGRAM) is a list of blocks (BLOCK) terminated by End. The
blocks are blocks of statements (STAT, see production 10), and each is
headed by an identifier (ID). This is an alphanumeric string unique to the

block®.

*Not all these stipulations are specified by the syntax of Figure 3.1 alone.
These additional syntactic requirements are discussed in Chapter 7.

38

1. PROGRAM :: = {BLOCK} DI End

2, BLOCK :: = Dl ID BLOCKBODY

3. BLOCKBODY t: = PROC | DPROC | MPROC | TPROC | WPROC
4. PROC :: = {STAT FIELD3}

5. DPROC :: = DI Decode (DREG) as DLIST

6. MPROC :: = Dl Mutex [(LABEL, LABEL)} {STAT)

7. TPROC :: = Dl Trigger STAT STAT

8. WPROC :: = DI While (DREG) do PROC

9. DLIST :: = DI Nome = FIELD2 |{D1 BITS = FIELD2}|

{DL BITS = FIELD2} D1 None = FIELD2

10. STAT :: = FIELDl FIELDZ

11. FIELDL :: = DI LABEL)

12. FIELD2 :: = ID|ID [LABEL]|REG-TRF|Null|Wait (DREG)
13. FIELD3 :: = # | (ORDER-INFO)

14, ORDER-INFO MRS LABEL!LABEL, ORDER~INFO

15. LABEL :: = {pigit}

16. iD tro= {LetteriDigiﬁ}

17. REG-TRF :: = ID % DREG

i8. BITS o= {Oil}

19. DREG :: = APL expression with IDs as variables.

Figure 3.1. The CHDL Syntax,

39

There are five types of blocks (see production 3 Figure 3.1): the
process block (PROC), the decode process block (DPROC), the mutual exclusion
process block (MPROC), the trigger process block {TPROC), and the while
process block (WPROC). These are distinguished from each other by the
terminal symbol appearing after the block ID (see productions 4 through 8
Figure 3.1).

A PROC block is composed of a list of statements each having three
fields (FIELDL through FIELD3). 1In the first field there is a numeric label
(LABEL), unique within the block to that statement.” In the second field
there is either the ID of another block, a register-transfer process
descriptor (REG-TRF), a null process descriptor (Null) or a waiting process
descriptor (Wait (DREG)). If an ID occurs that is the ID of an MPROC block,
it is followed by a numeric label in square brackets. This label must also
correspond to a label in the MPROC block of statements referred to,* The
third field is optional, and it can contain an n-tuple (any n~ 0), which
should only contain labels from FIELDL of other statements in the block,”

A DPROC block is distinguished by the terminal symbol Decode
following the block ID (they are separated by a carriage return and line
feed). After this comes (DREG), the decode argument, and another terminal
symbol as. The remainder of the block is a list (DLIST, production 9) of
statements whose first part is either the terminal symbol None or a string
of bits, and whose second part is the same as the FIELDZ of a PROC block.
The two parts are separated by the terminal symbol =,

An MPROC block is distinguished by the terminal symbol Mutex

following the block ID. After this symbol comes a list of pairs, called

*See previous footnote.

40

Representation if different

Terminals from that in Figure 3.1

DL Carriage return, line feed
(non-printing)

[—

Null
Wait
Empty string

Digit olil2lslalslel7islo

Letter A l e e l Z

Table 3.1, The Terminal Symbols.

41

the mutual exclusion condition. These pairs have labels from FIELDL of
subsequent statements in the block as their elements.” The remainder of
the block is a list of statements similar to those in PROC blocks except
FIELD3 is not present.

A TPROC block is distinguished by the terminal symbol Irigger
following the block ID. After this symbol come two statements similar to
those in MPROC blocks.

A WPROC block is distinguished by the terminal symbol While following
the block ID. After this symbol comes (DREG), called the while argument ,
and another terminal symbol do. The remainder of the block is similar to
a PROC block.

The statements used in the blocks (see productions 9 through 12) are
classified as register-transfer types if FIELD2 is a register-transfer
process descriptor (REG-TRF), process-call type if FIELD2 is a process-call
descriptor (ID\ID [LABEL]), null types if FIELD2 is the null process
descriptor Null, and wait types if FIELD2 is the wait process descriptor
Wait (DREG) (the (DREG) in this case is the wait argument).

The non-terminal DREG, which occurs in productions 5, 8, 12, and 17,
represent an APL [Hil 73] expression with IDs as variables. As we saw in
the system model of Chapter 1, these IDs represent registers in the DS. The
result of this expression is a vector of bit values. In the case of pro-
ductions 5 and 17 this vector can be of any length. 1In the case of productions
8 and 12 it should be only a single bit.

The format of descriptions in the CHDL is controlled by the appearance
of the delimiter D1 (carriage return, line feed) in the syntax. Spaces may

be included between terminal symbols to aid the readability of the CHDL text.

*See previous footnote.

42

4. INTERPRETING AND TRANSLATING PROGRAMS IN THE CHDL

In this chapter we will present, informally, an interpretation of the
CHDL in terms of process behavior, and a procedure for translating programs
in the CHDL into networks of CS modules. These two things are related to
the following way. The translation procedure associates a program in the
CHDL with a unique network of CS modules. Since each network has an unam-
biguous behavior (see Chapter 2), so does each program. This behavior is
our interpretation of the CHDL. Furthermore, this behavior ultimately
describes a collection of register-transfer processes (see Chapters 1 and 2),
whose functional nature is characterized by the APL expressions in the
register-transfer statements of the program. Thus programs in the CHDL
unambiguously define digital systems conforming to the system model of
Chapter 1.

From the discussion in Chapter 2 it should be clear that, in many
cases, a particular behavior may be realized by several different networks
of CS modules. Since in our translation procedure we require that each
program have a unique modular realization, a choice must be made in
specifying the translation procedure. Some choices may result in more
efficient realizations than others. This question has been discussed to
some extent in [Mud 75] and [Mud 77]. 1In this discussion we will not

consider it,

4.1 The Process Block

Figure 4,1 shows an example PROC block. The CHDL description is shown
at the top left. The behavior defined by this block can be-obtained by
simulating the PN at the top right. This process (called PBLOCK in the

CHDL) decomposes into four subordinate processes corresponding to the four

43

PBLOCK
l A\

1) RI<-R2
2) MBLOCK [1]
3) AC=—AC+R1 (1,2)

4) DBLOCK (2) PBLOCK

(’)
l
‘

! MBLOCK [1]
R1=<R2

)
-/

LC*’AC*“RI T
DBLOCKl

|
’
L

PBLOCK

o—MBLOCK 1]

-y S b

AC=-AC+R1 DBLOCK Fp-5481

Figure 4.1. An Example Process Block.

44

statements. The order in which they are to occur is given by the adjacency
structure formed from the statement labels and FIELD3 of each statement.

This order information can be interpreted as follows. Upon initiating the
process PBLOCK, the subordinate processes corresponding to statements 1 and

2 are initiated. When 2 is completed the process corresponding to statement

4 is initiated. When both 1 and 2 are completed, the process corresponding

to statement 3 is initiated. The process named PBLOCK is completed when

both 3 and 4 are completed. The ad jacency structure of PROC blocks can be
viewed as a partial ordering of processes in which the underlying binary
relation is '"precedes in time". These partial orderings each have a uni-
versal lower bound (in our example this is the process that controls PBLOCK).
The Hasse diagram for the adjacency structure of PBLOCK is shown at the bottom
left of Figure 4.1 (we adopt the convention of drawing Hasse diagrams with
their lower bound uppermost). The four subordinate processes are as follows:
Statement 1 defines a register-transfer: move the contents of register R2
into register Rl. Statement 2 defines a process~call, MBLOCK [l]. State-
ment 3 defines a register-transfer: move the sum of the contents of registers
AC and Rl into AC. Statement 4 defines a process~-call, DBLOCK.

A register-transfer has already been discussed in the system model of
Chapter 1. A process-call is similar to the subroutine construct found in
many programming languages. It is a point where the transfer of control to,
and the return of control from, another process is made. The behavior of
this process is defined by a block whose ID matches the ID used in the
process=-call. Thus process-call type statements induce a hierarchical
ordering on the block structure of a CHDL program. This is a partial ordering
that characterizes the control relationship among the blocks. FEach block in

the program is the controlling process for those blocks that are its immediate

45

successors in the ordering. Thus in our example, PBLOCK is the controlling
process for MBLOCK [1] and DBLOCK. In general, PROC blocks define, by way
of their adjacency structures, the temporal relationship among a set of
subordinate processes.

The module realization of a PROC block can be derived directly from its
Hasse diagram. Each node corresponds to a sub-network of J, S and W modules
arranged as follows. The input links to the network are the inputs to a tree
of (m-1) J modules. Their output is connected to the input link of an S module.
The secondary output link of this S module is connected to the input of a tree
of (n-1) W modules. The outputs of the W tree are the output links of the
sub-network. The value of m is equal to the number of immediate predecessors
of the node, and the value of n is equal to the number of the immediate
successors of the node. If two nodes are joined by an arc in the Hasse
diagram, an output link of the sub-network corresponding to the '"higher"
node is connected to an input link of the sub-network corresponding to the
“"lower' node. In this way the module realization of a PROC block can be
systematically constructed. However, two special cases arise in this pro-
cedure. Firstly, at least onme node has no successor. The sub-networks
associated with such nodes are just composed of a tree of (m-1) J modules.
Secondly, one node (the universal lower bound) has no predecessor. The sub-
network associated with it is a tree of (n-1) W modules.

The important points to notice about the structure of networks formed
by this procedure are that they only have a single inmput link (which is
connected to their controlling process, as we shall see in 4.6), that no
intra network connections involve the primary output links of S modules,
and that each statement (except the Null statement) has a unique output link

associated with it. (These links control the processes defined by the

46

block's statements.) For statements whose associated Hasse diagram nodes
have successors, the output links are the primary output links of S modules.
For statements whose associated Hasse diagram nodes have no successors,
these links may be the output links of W modules, J modules, or the secondary
output links of S modules. The Null statement is a special case. It repre-
sents the null or empty process. Consequently, it is realized by an Si
module. Thus any link associated with a Null statement connects directly to
an Si module.

The bottom right of Figure 4.1 shows the module realization of the
example PROC block obtained by using the above procedure. By using the PNs
of Chapter 2, which define the behavior of the individual modules, together

with Construction 2.1 and Simplifications 1 and 2, the reader may verify that

the associated PN of this realization is the same as that at the top right

of the figure.

! 4.2 The Decode Process Block

) Figure 4.2 shows an example DPROC block. The CHDL description is shown at
the top left. The behavior defined by this block canbe obtained by simulating
the PN in the center of the figure.* This process (called DBLOCK in the CHDL)
performs branching based on the value of the two-bit variable X (the decode
argument). If X=00 then control is passed to a process defined by the
process-call ABC. 1If X=11 then control is passed to a process defined by

the register-transfer. All other values of X (signified by the terminal

symbol None) result in the null process. In general, DPROC blocks define

a multiple way branch process. (There is an obvious analogy with the case

statement found in many high level programming languages.)

*In this figure and future ones we shall leave internal transitions unlabelled,
unless they are explicitly mentioned in the text.

47

DBLOCK
Decode (X) as r‘
00 = ABC -

11 = RO=-R1
None = Nuli DBLOCK

__ﬂ{

RO-=-R1

DBLOCK

D (Xo) p—

4

RO < Rl <— D(X;) p—{ SR D(Xy) p—>ABC

Si

FP-5484

Figure 4.2. An Example Decode Process Block.

48

The module realization of a DPROC block is simply a tree of D modules.
If n is the number of bits in the decode argument, the tree has height n.
if those bits are bl’ b2"°"bn’ then bi is examined by the conditional
links of all D modules at level i in the tree. Thus each D module at level
i has bi as its argument. Those output links corresponding to the decode
argument None (i.e. those links in the tree corresponding to none of the
explicitly listed values that the argument may take) must access their
common process through a tree of SR modules. In our example, this common
process is the null process, and the tree is just a single SR module.
Strictly speaking, this SR module is an interblock connection, rather than
an intra-block connection as shown in Figure 4.2. (See Figure 4.7, section
4.6.)

The bottom of Figure 4.2 shows the module realization of the example
DPROC block. Using the methods of Chapter 2 the reader may verify that the
associated PN of this realization has the same behavior as the PN at the

center of the figure. (Note, however, that the PNs are not the same.,)

4.3 The Mutual Exclusion Process Block

Figure 4.3 shows an example MPROC block. The CHDL description is
shown at the top. The behavior defined by this block can be obtained by
simulating the PN in the center of the figure. This process (called MBLOCK
in the CHDL) performs mutual exclusion between certain pairs of three
processes that each requires to gain control of a different one of the sub-
ordinate processes defined by the block's three statements. These
controlling processes are not shown explicitly in the example, but each
would contain a process-call type statement whose FIELDZ (see production 12,

Figure 3.1) was of the form MBLOCK[i]. The value of i corresponds to the

label of the statement defining the subordinate process required by the

49

MBLOCK
Mutex (1,2)(1,3)

1) AC=— PC
2) AC-=— MD
3) PC=— PC+1

:
]

o)

) O ® O ® O 0OCcC
T 2]

PC~PCH 1 . AC=<PC ']AC*MD

I

!i.(.,.,,
|
e

MBLOCK

PC=-PC+1 AC<PC AC<MD

FP-5482

Figure 4.3. An Example Mutual Exclusion Process Block.

50

MBLOCK
Mutex (1,2)(1,3)(2,3)
1) AC=PC
2} AC=-MD
3) PC=PC+1
z2 1 2
L P
ME 3 ME 3
'l' Y l Y lv
AC < PC
ME ME
T |
AC=—MD
ME AC<MD
7 v
1 e
PC=—PC+1 } l
AC<PC PC=—PC+1
Incorrect Correct

FP-5483

Figure 4.4, Correct and Incorrect Realization of a Mutual Exclusion
Process Block.

51

controlling process. The nature of the mutual exclusion is defined by the
mutual exclusion condition (see Chapter 3) following the Mutex symbol.

Each pair indicates two subordinate processes, which are to be

mutually exclusive in time. Thus in the example, statements 1 and 2 define
mutually exclusive processes, as do statements 1 and 3. In general, MPROC
blocks define a collection of subordinate processes which are separately
controlled, and which would normally be defined within other blocks were

it not for the mutual exclusion requirements.

In the example of Figure 4.3 the three statements define register-
transfers. The restriction on their concurrency imposed by the mutual
exclusion condition ensures that register AC is not being used as the
destination of two distinct register-transfers simultaneously, and further,
that the register PC is not being modified at the same time as it is being
used as the source of a register-transfer.

The realization of any MPROC block can be derived directly from the
list of pairs in its mutual exclusion condition. Each one corresponds to
an ME module. The rules for their interconnection should be clear from
the example in the figure. If the ME modules are regarded as nodes in a
directed graph, no realization should contain a circuit. The correct and
incorrect way to realize a block in which the potential for this occurs is
shown in Figure 4.4. (The block shown here is similar to that in Figure
4.3, except that it has a stronger mutual exclusion condition.) Each
statement corresponds to a unique output link and its associated controlling
process gains control of the process it defines, through a unique input
link. Thus the module realization of a MPROC block has as many input links

as output links. (All other block types have only a single input 1link.)

52

The bottom of Figure 4.3 shows the module realization of the example
MPROC block. Once again the reader may verify that the associated PN of

this realization is the same as that in the center of the figure.

4.4 The Trigger Process Block

Figure 4.5 shows an example TPROC block. The CHDL description is
shown at the top. The behavior defined by this block can be obtained by
simulating the PN shown in the center of the figure. This is the PN for a
T module (see Chapter 2, section 2.6). Thus the module realization for this
example, as for all TPROCs, is a T module.

The process defined by the CHDL (called TBLOCK) decomposes into two
subordinate processes corresponding to the two statements. They both
define process-calls, MBLOCK[2] and XYZ. The order in which these sub-
ordinate processes are to occur is given by their lexical order of occurrence.
Thus MBLOCK[2] precedes XYZ. However, the ability of T modules to control
overlapping processes means that the process defined by XYZ may be simul-
taneously active with the process that controls TBLOCK. In general, TPROC

blocks are used to define such overlapping or assembly-line processes.

4.5 The While Process Block

Figure 4.6 shows an example WPROC block. The CHDL description is
shown at the top left. The behavior defined by this block can be obtained
by simulating the PN at the right. This process (called WBLOCK in the
CHDL) is reiterated as long as the while argument is 1. The interpretation
and module realization of WPROC blocks is the same as for PROC blocks except
for the conditional reiteration. In our example the reiterated part of the
process decomposes into three processes. The Hasse diagram corresponding

to the order of occurrence of these is shown at the left. The module

53

TBLOCK
Trigger
1) MBLOCK [2]
2) XYZ
RN
Y
® TBLOCK
Bl
| I——
-
MBLOCK[2]

— MBLOCK [2]

Fp-5485

Figure 4.5. An Example Trigger Process Block.

WBLOCK
While (y) do [“
T A

1) MBLOCK [3] -

2) TBLOCK

\
3) DBLOCK (1,2) ° WBLOCK
T

3

MBLOCK [3]

i

TBLOCK

L N\ L
|4 f’\\A L‘
[‘ o/ r

e

)
O

i

DBLOCK
. A
WBLOCK
I(y)
4
W
4 5
MBLOCK[S}<~MO S S b—»TBLOCK
=
DBLOCK

Figure 4.6. An Example While Process Block.

55

realization of WPROC blocks realizes the conditional reiteration by having
an I module at the head of each realization. The argument of the I module
corresponds to the 1 bit variable appearing as the while argument.

The module realization of the example WPROC block is shown at the
bottom right of Figure 4.6. Once again the reader may verify that the
associated PN of this realization is the same as that at the top of the
figure.

There is a degenerate form of the WPROC block, and this is the Wait
statement. It is realized by connecting an iterate module followed by an
Si module to the link associated with the Wait statement. If the 1 bit
variable appearing in the wait argument is z, then it may be interpreted as

follows: the control process waits at this point as long as z remains 1.

4.6 The Inter Block Connections

Figure 4.7 shows the inter block connections that arise from the five
example blocks discussed in the previous sections of this chapter. These
are induced by the process-call type statements in the five blocks. Except
for MPROC blocks, all block realizations have exactly one input link. If the
iD of a process-call statement in some block, A, matched the ID of another
block, B, then the link corresponding to the statement in A is connected to
the input link of B. If in the whole system of blocks there are n process-
call statements with matching IDs, this connection must be done through a tree
of (n-1) SR modules. In our example, two SR modules are necessary. One is
required, because the process DBLOCK is shared by two other processes (PBLOCK
and WBLOCK). The other is required, because the null process is used twice
by DBLOCK. The case for MPROC blocks is slightly different, since MPROC
block realizations have as many input links as statements. The process-~call

statements which correspond to the process defined by an MPROC block are of

56

WBLOCK

AC<AC+R1

PC<PC+1
Y f
| ME

Y

XYZ

TBLOCK

SR
DBLOCK
Y
RO<R1<{ D) J«—{ D(Xo) p—{ DXy p— aBC
Ny P

v Null

5]

FP-5488

Figure 4.7. Inter Block Connections.

57

the form ID[i], where ID matches the MPROC block's ID and i matches a
statement label in the block. In such cases the connection is made to

the input link which corresponds to the statement in the MPROC block
having label i. As before, if in the whole system of blocks there are n
process-call statements with matching ID[i]s, this connection must be

done through a tree of (n-1) SR modules. The input links of those blocks

having no predecessors are capped with So modules.

4.7 Comments on the Blocks

The blocks give a convenient way to formulate the design of a system
as a hierarchy of less complicated subsystems. Due to the parallelism that
the blocks can define, this hierarchical organization can also be viewed
as a series of nested partial orderings of processes.

We note also (and we shall see in Chapter 7) that it is partly because
the syntax places branch points and mutual exclusion points in special
blocks, that CHDL programs only describe CSs that are deadlock-free.

Finally, we note that, because the syntax places T modules in special
blocks, CHDL programs show clearly the point at which the CS partitions
into overlapping segments. T modules could be placed anywhere S modules
are in CHDL defined CSs, without losing freedom from deadlock. However,

the operation of such structures would not, in general, be easy to visualize.

58

5. AN EXAMPLE DESIGN USING THE CHDL

In this chapter the use of the CHDL is illustrated by presenting the
design of a small system.

The system is a processor which executes register-to-register in-
structions. These operate on a DS of four registers and two multi-purpose
function units. The CS is implemented as a forwarding algorithm to achieve

instruction execution look-ahead.

5.1 The Forwarding Algorithm

Before discussing the CHDL program that describes the design, some-

thing should be said about the forwarding algorithm used in the design.

It is based on one first presented by Tomasulo [Tom 67}, and is aimed at

the efficient exploitation of multiple function units. Basic to the tech-
nique is a register tagging scheme which permits simultaneous execution of
independent instructions while preserving the essential precedences inherent
in the instruction stream.

The DS is shown in Figure 5.1. 1In reaiity it evolved as the CHDL
program was being written. However, for didactic purposes it is con-
venient to present the completed DS.

The instruction register is shown as IR in Figure 5.1, and the format
is two-address register-to-register. The registers (shown as Rl through
R4) are specified by fields A and B in IR, and the dyadic operation per-
formed on the data in those registers is determined by the value of the

field OC in IR. The instruction is interpreted as follows:

RA & C(RA) (::) C(RB) A=1,...,4
B=1l,...,4

59

MD ON

ACTI OCI ACT2] | OC2
FU
B Y
) S \
TRlje e e|TR4
Y 4 Y Y \ R R
TD1}{ D1 |TS1} S1 TD2| D2 |TS2] S2
FUl FU2 Rlle e e|R4
Fl F2
A A
l \ \ A
DB

FP-5588

Figure 5.1. The DS of the Example Design.

60

The operation is performed on one of the multi-purpose function units.
The function units are shown as FUL and FU2, and they perform a variety of
(unspecified for this example) dyadic operations. The instruction register
IR receives new instructions from the memory data register MD. The MD is
the I/0 port for the memory M.

The instruction execution breaks down into more basic steps. The
contents of the register specified by A is moved over data bus DB to either
register Dl or D2, depending on whether FUL or FUZ has been selected to per-
form the operation. Next, the contents of the register specified by B is
moved over DB to either register S1 or S2 (again depending on which function
unit has been selected). The function unit performs the operation taking the
contents of registers D1 and 81 (if it is FUl), or D2 and S2 (if it is FUZ)
as its operands. It deposits the result into register F1 (if it is FUL),
or F2 (if it is FU2). This result is then moved over DB to the register
specified by A. This basic instruction execution process can undergo some
modification as we shall see.

Instructions are issued to IR whenever there are available function

units to execute them. However, the registers specified by fields A and B
may be being used by previously issued but uncompleted instructions. This
is resolved by the forwarding algorithm. As part of this algorithm, tag
registers TR1 through TR4, TD1, TS1l, TD2 and TS2, each two bits long, are
associated with registers Rl through R4, DI, S1, D2 and S2 respectively.
In decoding each instruction the DS checks the tag registers of both of the
specified registers. If they are both 00 the execution of the instruction
can proceed, and the tag register of the register specified by A is set to
0l (if FUl is to perform the operation specified by the instruction), or

10 (if FU2 is to perform the operation). The non-zero value in the tag

61

register indicates that the contents of the associated register are in the
process of being changed by an instruction execution, and it also indicates
from which function unit the new contents are to come. I1f, when decoding an
instruction, either of the tag registers does not contain 00, it indicates
to the CS that the associated register (s¥*) will be used to receive the
result of an instruction which was issued earlier, and which is still in

the process of being executed. Hence,the current instruction execution must

wait for the result of the earlier instruction execution. The issuing and

execution of further instructions could be delayed at this point wuntil the

required result is in. However, the forwarding algorithm avoids this potential

inefficiency by sending the non-zero tag(s*) over bus TB to the appropriate

function unit, in lieu of the result, to reserve that unit for when the

result is in. Next the tag register of the register specified by A is set
to 01 (if FULl is to perform the operation specified by the instruction), or
10 (if FU2 is to perform the operation). (Note that this may involve over-
writing non-zero data in the tag register.) The next instruction can now be
issued.

1f the A field of an instruction called for the contents of Rl as an
operand, and the instruction's operation was to be performed by FUl, and
further that the tag register associated with R1l, namely TRl, was non-zero,
then the contents of TR1 would be moved over TB to TD1l, and TRl would be set
to 01. Also, if the register called for by field B of the instruction was in
use, the contents of its tag register would be moved to TSl. (TDZ and TS2

would be the tag destinations, if FU2 was the function unit to be used.)

*Since this example has only two function units whose operations are not
pipelined (implying that their input registers are not allowed to be changed
until their operations are complete and their results have been output),
these cases do not occur,

62

A summary of the interpretations placed on the tag data is given below in

Table 5.1.

TRL (i=1,...,4)

00 Data available in Ri
01 Ri in use, result expected from FUL
10 Ri in use, result expected from FU2

TD1 or TS1 TD2 oxr TS2

00 00 Data in D or S
01 Result expected from FUL
10 * Result expected from FUZ

Table 5.1. Tag Data,

In its execution of the dyadic operation specified by 0C, function
unit i first checks to see if V/(IDi, TSi) = 0. 1If it does, it interprets
this to mean that both operands are present in Di and Si. It can then
proceed with the operation. If the above condition is not true (i.e. the
function unit has received non-zero tag data instead of operand data), the
unit waits until it is. When it completes its operation and places the
result in Fi, it broadcasts this result to all registers whose tag registers
contain data agreeing with the two bit code associated with that function
unit (see Table 5.1). In many cases, therefore, results are "forwarded"

straight to the D or S registers of the function units, rather than going

wte
W

See previous footnote.

63

via any of the registers Rl through R4. When a broadcast result reaches a
register, the associated tag register is reset to 00. 1In the case of
function units waiting on operands this is the go-ahead to start operation.
This algorithm has the property of preserving essential precedences
in the instruction stream, while allowing independent instructions to be
executed in an order which is dictated only by the availability of a function
unit. When the dyadic operations can take a long time compared to the
register~to-register movements, this makes for efficient utilization of
the multiple function units.
Figure 5.2 illustrates the algorithm in operation on a stream of four
instructions. This is for the DS of Figure 5.1. The contents of the

registers and their tags are shown at key times in the execution process.

5.2 The CHDL Program for the Example Design

Figure 5.3 shows the CHDL program for the example design. Notice that
we have used two "lexical” indices 1 and j. These take values from the sets
{1,2,3,4} and {D,S} respectively. Thus in Figure 5.3(b) we have used RAL to
stand for the four blocks RAl, RAZ, RA3 and RA4. Furthermore, within each
block i is replaced with the appropriate value 1,2,3, or 4. Similarly in
Figure 5.3(e) we have used DECTjl to stand for the two blocks DECTD1 and
DECTS1.

Figure 5.4 shows the block dependencies. If one block in the program
calls another,® this relationship is represented in Figure 5.4 by a downward
sloping line from the calling block to the one called. Precedence between

blocks called from the same block is not represented, neither is the block

*Borrowing a term used in software to describe an analogous situation, we
say that block A calls B if A has a process-call statement whose ID matches
B's ID.

64

- Instruction decode, possible wait, and tag/operand
distribution.

[Function unit performing operation and then
broadcasting result.

72z Function unit waiting for arguments.

% > Time
.Rl < RI1*R4 +—— FUL]
2 Rl < RI*R1 | v FU? !
3 R4~ R4-R2 H
4 R3<-R3+R2 // ——{FU1
4/45/}2&.
TR11 00|01 101} 10 10 00
R1 Al AL AL A A2 D2

TR2] 00 | 00| 00 | 0O OO OO OO OO 00
R2 Bl B|B|B|B|B|B|B|B

TR3]1 00| 00|00 |00 |00 |00 |0l | OO |00
R3 cicjcj)pcCcy|CyjpC | C[C+BIC+B
TR4} 00| 00| 00|00 |01 OO |00 |00]| 00
R4 by D} Dj| D| D |D-BD-BD-BD-B
D1} 00| 00| 00| 00|00 |00|00|00]|00
D1 - AALTA | D D|C|C]|]C

TS1 00|00 | 00| 00|00 |00 |00|00| 00
Sl — | Dy Dy D}y B} B|B|B]|B

0200|100 |01 | 00|00 |00 |00 |00 |00
D2 { —| — | — | AD|AD | AD | AD | AD | AD
TS21 00101 101 |OO|00|00|00|00]|00
S2 | — | — | — | AD|AD | AD | AD | AD | AD

FP-5589

Figure 5.2, Illustration of the Forwarding Algorithm.

65

MAIN
While (oN) do
1) FETCH
2) EXEC (1)
FETCH
1) Mb + M
2) IR + MD (13
3) PC « INC (1
EXEC
1) Wait (ACTLA ACT2)
2) TST (L)
TST
Decode (ACT1,ACT2Z) as
00 = TF1
0l = TFL
10 = TF2
11 = ERROR
TF1 TF2
Trigger Trigger
1) PREDCD1 1) PREDCD2
2) DCD&EX1 2) DCD&EX2

Figure 5.3(a). The Example Design.

66

PREDCD1 PREDCD2
1y ACTL « 1 1y ACT2 + 1
2) Fu ¢ 01 2) FU + 10
3) OCl « OC 3) 0C2 + OC
4) DBUS [1] (2) 4) DBUS [1] (2)
5) DBUS [2] (4) 5) DBUS [2] (4)
DBUS
Mutex (1,3)(1,4)(2,3) (2,4) (3,4)
1) DECA
2) DECB
3) BCAST!
43 BCAST2
DECA DECB
Decode (A) as Decode (B) as
00 = RAL 00 = RB1
01 = RAZ 01 = RB2
10 = RA3 10 = RB3
11 = Ra4 11 = RB4
RAi RBi
Decode (TRi) as Decode (TRi) as
00 = MVAL 00 = MVBi
None = BSYAi None = BSYBi

Figure 5.3(b). The Example Design.

67

MVAL MVBi
1) TRi « FU Decode (FU) as
2) CHKAL 01 = S1 « Ri

10 = 52 ¢« Ri
None = ERROR

CHKAL

Decode (FU) as. BSYB1
0l =» Dl « Ri Decode (FU) as
10 = D2 « Ri 01 = TSl « TRi

10 » TS2 « TRi
None = ERROR

None = ERROR

BSYAi
1) CHKBAi
2) TRi « FU (1)

CHKBAL

Decode (FU) as
0l = TDL ¢ TRi
10 = TD2 « TRi

None = ERROR

Figure 5.3(c). The Example Design.

68

DCD&EX1 DCDSEX2
1) Wait (V/(TD1,TS1)) 1) Wait (V/(TD2,TS2))

2) F1 « DL s (L) 2) F2 € D2 s2 (1)
]]

3) DBUS [3 (2) 3) DBUS [4 (2)

BCAST1 BCAST?Z
1) DECITRIL 1) DEC2TRI
2) DECLTR2 2) DECZ2TR2
3) DECIIR3 3) DEC2TR3
4) DECLTRA 4) DECZTRA
5) DECTD2 5) DECTDL
6) DECTIS2 6) DECTIS1

7) ACT1 + 0 (1,2,3,4,5,6) 7y ACT2 « 0 (1,2,3,4,5,6)

Figure 5.3(d). The Example Design.

69

DECITRi
Decode (TRi) as
01 = RiFl
None = Null
RiF1
1) Ri « F1
2) TRi « 00
DEC2TR1i
Decode (TRi) as
10 = RiF2
None = Null
RiF2
v 1) Ri & F2
2) TRi + 00
DECTj1 DECT j2
Decode (Tjl) as Decode (Tj2) as
10 = jlF2 01 = j2F1
None = Null None = Null
jlF2 j2F1
1) j1 ¢ F2 1) j2 « F1
2) Tjl « 00 2) Tj2 « 00

Figure 5.3(e). The Example Design.

70

|

\\) @
|
O

®@ @
SEECEEE)

Figure 5.4. The Block Dependencies.

71

type (i.e. PROC, DPROC, MPROC, etc.). The shorthand of using the lexical
indices of Figure 5.3 has been dropped, and each block ID has been written

out in full,

5.2.1 The MAIN Block

This is the highest block in the hierarchical structure of blocks
(see Figure 5.4). It therefore represents the most simple description of
the target system. It partitions the system, which we have called MAIN,
into two subsystems, specified by blocks FETCH and EXFC. FETCH is run first,
and upon its completion EXEC is run. This sequence 1is reinitiated as long
as the ON flag is set., As may be guessed, the names are mnemonic; FETCH
describes a process that fetches an instruction from memory and EXEC

describes a process that executes it.,

5.2.2 The FETCH Block

This decomposes into three register-transfers. These move the contents
of the memory location (M) pointed to by the program counter (PC) (the
contents of the memory location is assumed to be an instruction) into the
memory data register (MD), and then into the instruction register (IR).
Concurrently with this last register-transfer the contents of PC are incre-

mented. (INC is a functional block whose output is its input plus one.)

5.2.3 The EXEC Block

The flags ACT1 and ACT2 are used to indicate to the CS the avail-
ability of FUl and FU2, respectively. If FUl is busy ACT1 is set, similarly
for FU2 and ACT2. Thus the process described by block EXEC waits until at
least one of the function units is available before proceeding with the

execution of the instruction in IR.

72

5.2.4 The TST Block

This block is called by block EXEC. It describes a process that
assigns the execution of the instruction in IR to either block TFl, if
FUl is available (i.e. ACT1=0), or else to block TF2. The choice is based
on the two bit value (ACT1, ACT2).

The occurrence of (ACTL, ACT2) =11 at this point in the operation
of the system is clearly an error. This is dealt with by block ERROR,

whose details we have not specified,

5.2.5 The Blocks TF1 and TF2

These two blocks describe similar but mutually exclusive (as a
consequence of the decode process TST) processes. TFi (i=1,2) comprises
process PREDCDi followed by process DCD&X1. PREDCDi describes the move~
ment of data and/or tags specified by fields A and B of the instruction in
IR, from any of the registers RL, RZ, R3 or R4 to function unit i. DCD&EXI
describes the execution, by function unit i, of the operation specified by
the instruction, and the subsequent broadcasting of the result to the
registers and function units.

Since TFL and TF2 are TPROCs, both DCD&EX1 and DCD&EXZ can overlap
with the FETCH process and the first part of the EXEC process up to but not
including PREDCD1 and PREDCD2, respectively. Assuming the function units
are initially not busy this allows the following type of occurrence: the
system can fetch an instruction, issue it to a function unit, fetch a second
instruction, issue it to the other function unit, then finally fetch a third
instruction. At this point, the possibility of a wait (based on the avail-
ability of a function unit) at the beginning of process EXEC determines

when this third instruction gets issued to a function unit. Thus the system

73

keeps two instructions executing concurrently, one in each function unit,
and a third ready for issue in IR. The details of this will become clearer

as we continue with comments on the program of Figure 5.3.

5.2.6 The Blocks PREDCD1 and PREDCDZ

These preliminary decode processes set up some status registers to
assist in tag manipulation and function unit operation. They also call
other blocks to perform data and/or tag movement. Specifically, in PREDCDi,
flag ACTi is set (indicating that FUi is to be busy). Register FU is set
to 01l (for i=1), or 10 (for i=2). This register is used to indicate which
function unit is to perform the instruction's operation, and as a source for
tag data. The operation code (in field OC of IR) is sent to the operation
register of the function unit (OCl or 0CZ). Finally, two decode processes
are initiated to determine from which registers the instruction's operands
are to come, These decode processes, DECA and DECB, are called sequentially,

and they are called through a mutual exclusion process, DBUS.

5.2.7 The Block DBUS

This mutual exclusion process ensures that the movement of data
and/or tags from the registers to the function unit, the broadcasting of
results from function unit 1, and the broadcasting of results from function
unit 2 do not interfere with one another as a result of using a common
resource, DB. (BCASTI and BCASTZ are the blocks that handle the broadcasting.
They are discussed later on,)

Notice that PREDCDI and PREDCDZ are mutually exclusive in time (since
TFl and TF2 are). Thus DBUS and, hence, DECA and DECB can be shared by them
without conflict., Also, since the decode processes, DECA and DECB, are

called sequentially (see the order information of statements 4 and 5 in

74

PREDCD1 and PREDCDZ) they do not interfer with one another even though some
register-transfers that they ultimately invoke share DB. Thus it is not
necessary to include the pair (1,2) in the mutual exclusion condition of

DBUS.

5.2.8 The Blocks DECA and DECB

The blocks DECA and DECB decode the operand fields A and B respect-
ively, to find out which of the registers, R1, R2, R3 and/or R&, are to be
used by the instruction in IR. Based on the result of these decode pro-
cesses, control is passed to other processes to handle the movement of data
and/or tags between the registers and the function units.

For example, in DECA, if A=01, control passes to block RAZ. This
moves the contents of R2 (using MVAZ2) or its tag (using BSYA2) to the
designated function unit.

Similarly, for example in DECB, if B =00, control passes to block
RBl. This moves the contents of Rl {using MVB1) or its tag (using BSYBL)

to the designated function unit.

5.2.9 The Blocks RAi and RBi

The blocks RAL,...,RA4, RBl,..., and RB4, describe decode processes.
Block RAL (i=1,...,4) calls blocks MVALI if tag register TRi=00 (i.e. if
register Ri is not being modified by an instruction execution). Otherwise
(i.e. Ri is being modified) it calls block BSYAi. Similarly RBi calls
MVBi or BSYBi. An A as the penultimate character in a block identifier
indicates that the block describes one of the processes that handles register
or tag data specified by operand field A., Similar comments apply for B as

the penultimate character in a block identifier.

75

5.2.10 The Blocks MVAL and CHKAL

The block MVAL (i=1,...,4) moves the contents of FU into TRi. This
indicates that the contents of Ri are to be sent to FUx (x::C(FU)lO)’ and
that its new contents will come from FUx. Concurrently with this, MVAL calls
CHKAi. This block checks the value x to determine which function unit is
to receive the contents of Ri. It then transfers these data with the

register-transfer Dx «Ri.

5.2.11 The Blocks BSYAi and CHKBAIL

Control passes to block BSYAi (i=1,...,4) in the event that Ri is
busy (i.e. is waiting on a result from one of the function units). This
block moves the contents of tag TRi to the function unit in lieu of the
contents of Ri. WNext it updates TRi to indicate from which function unit
Ri will receive its new value.

Moving the contents of TRi is actually dome by CHKBAi. This block
first checks the contents of FU to determine which function unit is to

receive the contents of TRi.

5.2.12 The Blocks MVBi and BSYBRi

The block MVBL (i=1,...,4) is similar to block MVAi. However, it
pertains to operand field B rather than A. A register specified by
operand field B of an instruction is used only as a source of data. There-
fore its associated tag register is not changed. This accounts for the
difference between MVBi and MVAi.

The block BSYBi (i=1,...,4) is similar to block BSYAi. Its dif-

ference is also a result of it pertaining to operand field B.

76

5.2.13 The Blocks DCDAEX] and DCD&EXZ

The blocks DCD&EX1 and DCD&EX2 describe the processes that control
the operation of FULl and FU2, respectively. DCD&EXL waits until both the
tag registers (TDl and TS1) are set to 00 before performing the dvadic
operation, specified by the code in OCl, on the contents of the input
registers (Dl and S1). The result is placed in register FL. This is then
broadcast, conditionally, to registers R1l, R2, R3 and R4 as well as to the
input registers D2 and $2 of FUZ. This broadcast is described by block
BCAST! and is called by DCD&EX1 through the mutual exclusion process DBUS

(see section 5.2.7). The process described by DCD&EX2 is similar.

5.2.14 The Blocks BCASTL and BCASTZ

The block BCASTI describes a broadcast-like process which moves
the contents of Fl to any of the registers R1, R2, R3, R4, D2 or S2, whose
associated tag registers are set to Ol. (These tag registers are TR1, TRZ,
TR3, TR4, TD2 and TS2, respectively.) Upon the completion of the broad-
cast the flag ACT1 is set to 0 to indicate to the CS that FUL is free to be

reused. The process described by BCAST2 is similar.

5.2.15 The Remaining Blocks

The remaining blocks are DECTRi, RiFL, DEC2TRi, RiFZ (i=1,...,4) and
DECTj1l, jlF¥2, DECTj2, j2Fl (j=D,S) (see Figure 5.3{e)). These blocks des~
cribe processes that perform the register-transfers required by blocks
BCAST1 and BCAST2. Appropriate tag registers are decoded to see which
register-transfers are to be performed.

For example, if BCAST1 is active, DECLTRI is called (among other blocks),
and it decodes tag TRl to determine whether Fl is to be sent to RL. If TRL =01

this register-transfer is to be carried out. This is done by the process

77

described in block RIFl. RLFl also resets the contents of TR1 to
indicate that register Rl is no longer being modified by an instruction

execution.

5.3 Comments on the Example Design

This example design illustrates the capability of the CHDL to
describe various types of concurrency, as well as mutual exclusion. These
are essential ingredients for any formalism that seeks to characterize
multiprocessing systems.

Also note, firstly, that the END symbol was omitted in Figure 5.3.
Strictly speaking, the blocks should have been arranged linearly with End
as the last symbol in the last block. Secondly, that the 'lexical index
used as a shorthand could be included in the CHDL's syntax and interpreted
in a way analogous to open subroutines or macros found in programming
languages. And finally, that the CHDL could be improved by including the
facility for declaring data types (busses, registers, subfields of
registers, etc.). The last improvement was made by Smith in [Smi 771, which

describes a simulator for a subset of the CHDL.

78

6. THE SCOPE OF THE CHDL

APL, or some variant, has been adopted by many proponents of CHDLs as
a formalism to describe the functional aspects of register-transfer logic.
(See for example [Fal 641, [Fri 67], [Hil 73], [Aze 75] and [Fra 751.)
Taking this consensus as an acknowledgement of APL's capability to char-
acterize adequately the functional aspects of the DSs of digital systems,
we shall only examine the scope of the CHDL with respect to the design of
Css.

One very common model for CSs is the flowchart. This is evident from
the large number of digital systems that are controlled by microprograms.
The Structure Theorem [Mil 72] shows that any flowchart can be represented
as an expansion of the following constructs:

1. £ then g
2. if p then [else g
3. while p do f

where f and g arve flowcharts with one input and one oubput, and, then, if,

else, while, do are logical conmnectives. If the term 'flowchart” is inter-

preted as ''process' (in our sense), the following consequences arise: £

nd g can be interpreted as processes described by blocks in the CHDL. This

3

follows since such processes arecontrolled by a single link, and,hence, can

be thought of as having one input and one output (the request and acknowledge

signals of the link). Furthermore, the above three constructs are then seen
to occur in the CHDL: 3 exists explicitly - the WPROC block, 2 exists in a
more general form - the DPROC block, and 1 also exists in a more general
form - the order information. Hence,the scope of the CHDL encompasses that

of the flowchart model.

79

In addition to this logical sufficiency the CHDL has considerable
scope for parallelism, facilitating the design of high performance systems.,
Firstly, simple unrestricted parallelism can be described. This qualifi-
cation refers to the fact that the order information allows parallelism to
be described without unnecessarily binding processes together, as is often
the case with restricted methods of representing parallelism, such as the
use of next or and operators [Bel 71] [Wir 66]. (These two particular
operators restrict a language to series/parallel structured processes.)
Secondly, overlap or assembly-line type of parallelism can be described using
TPROC blocks. Finally, mutual exclusion can be described using MPROC blocks.
This allows resolution of some simple resource conflicts that arise as a result
of parallelism. (Other resource conflicts, such as shared blocks and shared
register-transfers, are handled by SR modules.)

The above discussion suggests that the first of the two purposes of
this thesis stated in the Introduction (to develop a CHDL with sufficient
scope to describe multiprocessing systems) has been satisfied. Nevertheless,
it should be pointed out that more comprehensive models exist. Typical of
these is the PN which can describe CSs that are outside the scope of the CHDL.
However, much of the additional scope these afford is of questionable use,
and it is our opinion that the considerable complexity of any PN that models
an entire (S can confuse rather than aid the design process. (Bear in mind
that our use of PNs is to define behaviors, and then later to prove assertions

about those behaviors. We do not use them as a design aid.)

80

7. PROOF THAT SYNTACTICALLY CORRECT CHDL PROGRAMS DESCRIBE
SYSTEMS WHICH HAVE DEADLOCK-FREE (CSS

This chapter introduces some additional syntactic requirements. Then
it is proved, using a method for characterizing the behavior of networks of
CHDL blocks, that syntactically correct CHDL programs describe systems which
have deadlock-free CSs. Computational complexity arguments show that
checking the syntax (excluding the APL expressions of the register-transfers)
is very simple. It is concluded that the second purpose of this thesis has
been met (to specify thé CHDL so that syntactically correct programs des-
cribe systems which have deadlock-free CSs), without resorting to a complex

syntax.

7.1 The Additional Svyntax

There are some additional syntactic requirements, not easily expressed
by a context-free grammar, that CHDL programs must satisfy. Consequently
they were not represented in the syntax of Figure 3.1 but are instead listed
below. 1In the remainder of this discussion the phrase "syntactically correct'
(5C) should be interpreted to mean ''satisfying the syntax of Figure 3.1 and the
additional syntax (AS) below',

AST, The inter-block counnections invoked by the process-call statements
must form a partial ordering.

ASZ. Every block ID in a process-call statement must have a unique
corresponding block.

AS3, The adjacency structure of every PROC and WPROC block must form
a partial ordering with a universal lower bound.

ASh, Each statement label must be unique within its block.

ASS5. In every DPROC block the bit string in the BITS field of every
statement must have the same length.

AS6 . If there are less than 2£ (£ = number of bits in the BITS field)
statements in the DLIST of any DPROC, one of them must have None
in the BITS field.

31

AS7. Every statement label in an MPROC block must occur in at
least one of the pairs of the mutual exclusion conditiom.

AS8, Every number in the pairs of the mutual exclusion condition
of an MPROC must occur as a statement label,

Notice that these additional syntactic requirements cover those
stipulations about the syntax of the CHDL, noted as footnotes in Chapter 3,

that were not covered by the contex-free grammar of Figure 3.1.

7.2 The Proof

To prove that SCYCHDL programs describe systems which have deadlock-
free CSs, freedom from deadlock is defined in terms of process behavior
(i.e. in terms of PNs), and then all SC CHDL programs are shown to satisfy
this definition.

In Chapter 4 we saw how to derive a PN that defines the behavior of
a process described by a CHDL block. This was derived from the block's
underlying network of CS modules by using the PNs of the ten CS modules,
Construction 2.1, and the simplifications of Chapter 2. In the proof of
this section we shall be concerned with whole CHDL programs, i.e. networks
of CHDL blocks. In order to define the behavior of networks of blocks we
could also join the PNs of the blocks together using Construction 2.1.
However, it is convenient to take a slightly different approach.

Consider a block in a network of blocks. Its behavior in such an
environment is defined by simulating its PN, B, according to the procedure

(modified from that in Section 2.1) below (see Figure 7.1):

Pl
1. g« 7T
2. Choose 7, a non-empty subset of 7_.

1
3. M@p) ¢ LVp€m

82

4. Compute the set of enabled transitions in © (U).
5. Choose one transition t, € U.

6. If t€7 then 8 €6 - {¢].

7. Fire t.

i

8. IE M(p) 1 for any p€5ﬂ1<~ﬁ then halt.
9, I£8NT = ¢ then M(p.)¢..." M(p.) + 0 go to 1.
i Im

10, Go to 4,

where
T = itl’“"’tﬁ} the set of transitions in B.
WI = ipl,.‘.,pk} the set of input places.
mo= ipi seeesPy } a non-empty subset of ﬂI
o)
T o= {ti ,e..,ti } those transitions that are output transitions of
1 m the places in 7. See Figure 7.1.

To understand Pl two definitions are necessary. Firstly, the input
giaces* of a block's PN are those corresponding to the controlling processes,

or input links. Secondly, the output places™ are those corresponding to

process-call statements, or output links. The simulation defined by Pl
can then be thought of in the following way: A non-empty subset, w, of the
input places of B is marked with a token (this represents the action of the
enviromnment on the block), the remaining input places are assumed to be
empty. B is simulated until all the places in T empty and then refill with

o2 token. These tokens are then removed. A new T is selected at random

*These terms are not to be confused with input and output places of tramsitions.
(See Section 2.1.) It is required, if p is an input/output place with x and

y as its input and output transition, respectively, that:

1. x is the only input transition of p.

. v 1s the only output transition of p.

« p is the only input place of vy.

. p is the only output place of x.

£l b

9y

FP-5613

Figure 7.1, A CHDL Block's PY.

84

(it may be the same as before), these places are marked and the procedure
repeats.

The random markings of the input places model the transfer of
control from the block's enviromment to the block. When the block's PN
has been simulated and those input places refill, removal of their tokens
corresponds to the return of control to the environment. We assume that the
initial marking of B does not place tokens in any of the input or output
places. Thus under Pl, simulation halts if the condition in statement 8
is true, because we require, in order to keep our PN interpretation con-
sistent with the behavior we are trying to model, that input places can only
be refilled if they receive a token in the immediately preceding marking
phase of the simulation (statement 3).

The output places of B are shown as SIEEERRL in Figure 7.1. Tokens
in these correspond to processes occurring in B's environment that are
controlled by B.

Two comments are pertinent regarding the above PN model of the inter-
action of a CHDL program's block with its enviromment. Firstly, the concepts
of liveness and safeness, defined in Section 2.1, still apply to a PN simu-
lating under Pl. Secondly, the behavior of a block's environment may be
such that only some of the m's can occur. To reflect this, the choice in
statement 2 of Pl can be limited to a subset of the set of all sets of input
places. We shall call this subset the environmental constraint (EC).

Freedom from deadlock can now be defined: A CHDL program describes

a system whose CS is deadlock-free, if the PNs for all of the blocks of the

program, together with their initial markings, are each live and safe (LS)

when simulated under Pl with their respective ECs.

85
This definition is in accordance with an intuitive idea of freedom
from deadlock, because Pl never halts, and no places or transitions ever
become excluded from the action of Pl, if the PNs are LS. Hence, the
processes defined by such PNs never reach a point from which they cannot
proceed,

Theorem 1: For every SC PROC block ¥ a PN* with a single input place, %, an
initial marking, MO==(O,.S.;O), and an EC==K{X}}, that is LS
under P1.,

Proof: For every SC PROC block & a PN that is a strongly connected
marked graph (in a marked graph every place has exactly one
input transition and one output transition) that defines its
behavior (see Section 4.1). A member of this class of PNs is
LS if every circuit in its PN graph has exactly one place con-~
taining a token (see [Com 71] for more on marcked graphs).

Since EC=={€X}}, the marked graph that defines the behavior
of any PROC block receives a token in x each time Pl executes
its statement 2 (the choice for T is limited to {x}). The input
place, %, is in evervy circult of the marked graph: therefore,
the sufficient condition for LS, mentioned above, is satisfied.

Theorem 2: For every SC DPROC block ¥ a PN with a single input place, x,
an initisl marking, MO==(Q,Q..,O}, and EC::{{XEE, that is LS
under Pl.

Proof: For every SC DPROC & a PN that is a strongly

connected state machine graph(in a state machine graph

every transition has exactly one input place

*It was noted in section 2.12 that there is, in general, no unique PN graph
associated with a particular behavior. Since we are primarily concerned
with the behavior, not its defining PN, it is sufficient to consider any
one of the set of PNs associated with that behavior.

86

and one output place) that defines its behavior (see Section
4.2). A member of this class of PNs is LS if exactly one
place contains a token (see [Hei 76] for more on state machine
graphs).
Since EC:={{X}}, the state machine graph that defines the

behavior of any DPROC block receives a token in x each time
Pl executes its statement 2 (the choice for T is limited to
ix}}s Hence, the condition for LS, mentioned above, is
satisfied.

Theorem 3: The PN for an ME module with two input places, x and v, an
initial marking, M0:={@,,@g,i,¢‘g,3) (the one initial token
is in place S of the ME module's PN - see Figure 2.10), and
an EC= {{x], {y}} or {{x,v}} or iz}, v}, {x,y}}> is LS
under Pl.

Proof: Obvious from Figure 2.10,

Theorem 4: The PN for an SR module with two input places, ¥ and v,
an initial marking, M0=={o§o.@,é,.,sgﬁ} {the one initial token

is in place S of the SR module's PN - see Figure 2.9), and an

} or {{x,y}> oY

e

{x}, {yéj {x,y}}, is LS under Pl.

.
[
£y

EC = {{x},

P

y

4,

Proof: Obviocus from Figure 2.9,

Theorem 5: The PN for a T module with a single input place, x, an initial
NQ=:{G,,.,51,g,.,G} (the one initial token is in place S of
the T module's PN - see Figure 2.7), and an EC= {{x}}, is
LS under PL.

Proof: Obvious from Figure 2.7,

87

Theorem 6: The PN for an I module with a single input place, x, an

initial marking, M_=(0,...,0), and an EC={{x}}, is LS

under Pl.

Proof: Obvicus from Figure 2.12.

Theorem 7: SC CHDL programs describe systems which have deadlock-free
Chs.

Proof: SC CHDL programs are acyclic networks of some combination of

PROC blocks, DPROC blocks, MPROC blocks, TPROC blocks, and
WPROC blocks. These can be viewed, for the purpose of this
proof, as networks made up from PROC blocks, DPROC blocks,
blocks containing single ME modules (MPROC blocks can be
thought of as networks of blocks containing single ME modules-
the translation procedure of Section 4.3 ensures that these
sub-networks are acyclic), blocks containing single SR modules
{the trees of SE modules used when blocks are shared can also
be thought of as networks of blocks containing single modules),
TPROC blocks (these contain a single T module), and blocks
containing single I modules (WPROCs can be thought of as two
blocks networks: a block with a single I module followed by

a PROC block). The highest level blocks in such networks are
blocks containing single So modules (see Section 4.6).

Theorems 1 through 6 demonstrate that the behavior of net-
works made up from PROC blocks, DPROC blocks, and blocks con-
taining single ME, SR, T, or I modules satisfies our definition
of deadlock-free (assuming they are started in the correct
initial state), if the respective ECs (expressed in the state-
ment of each theorem) of the PNs defining the behaviors of the

blocks are also satisfied.

88

The ECs of the blocks in Theorems 1 through 6 are satisfied
if such blocks are called by blocks whose associated PNs are
LS. This condition ensures that the output places associated
with the calling blocks behave in a way that is consistent
with the apparent environment that Pl creates for a block
simulating under it.

The highest level blocks comtain single So modules. Their
PNs (one is shown together with the appropriate initial marking
in Figure 2.3) are LS¥. Therefore, since any network des-
cribed by an SC CHDL is acyclic, it follows in a finite number
of steps that all the ECs of the blocks of such networks are
satisfied. Hence, our definition of deadlock-free is satisfied,
and SC CHDL programs describe systems which have deadlock-free
CSs.

Note that throughout the discussion on deadlock it was implicitly
assumed that the register-transfer processes were never sources of deadlock,
i.e. they took a finite, if unbounded, time to complete. 1In the next section
we shall discuss the "cost', in complexity terms, of specifying the CHDL so

that SC programs in it have deadlock-free CSs.

7.3 The Complexity of Checking the Syntax of a CHDL Program

Computational complexity analyses are concerned with the "amount of
work' done by algorithms. For the purpose of this and remaining discussions,

this is measured in terms of the number of operations which must be performed.

#The PNs for So modules have no input places so it is sufficient to con-
sider them as simulating under the original procedure of Section 2.1.

89

7.3.1 Checking a CHDL Program Against the Syntax of Chapter 3

The first step in this check of a CHDL program is to take the string
of characters representing the design and to partition it into a sequence of
tokens, where a token is a string of characters that forms a single logical
unit.

The syntax given by the productions of Figure 3.1 can be simplified if
the following logical units are tokenized: 1IDs, LABELs, DREGs, and BITS.
The resulting simplified grammar is shown in Table 7.1. Notice that the
tokenized entities are now represented by a single generic terminal symbol.

Strings of symbols produced by this grammar can be checked for correct-
ness by the finite automaton whose control state diagram is shown in
Figure 7.2. (This implies the tokenized CHDL is a regular language,
although it is not characterized by a regular grammar, as can be seen from
the simplified grammar of Table 7.1.) The control states are shown as
circles, with the start and finish states labelled S and F respectively. A
string is accepted as correct 1f starting in state S there exists a path to
F such that the arc labels taken in the order in which they occur in the
path agree with the string. Otherwise the string is considered to have a
syntax error.

For any inpuf string no input symbol is examined by the above parsing
procedure more than once; hence any input string is parsed in a number of
operations linearly proportional to the length of the input string. Thus
an algorithm for checking any CHDL program for correctness need not have a
complexity of greater than O(n), where n is the number of statements in the
program,.

it might be argued that any such algorithm also has to tokenize the

logical units mentioned earlier, and that this could increase the degree

90

e TN bl
balaje ’ L oh .,O
- bo e
o b pa cbo
. i o)
Q)
ba. b
7N by TN A (\<
{ =)
S L/ VR b.
ok > %0 ba ot : o S pofaldfe=snlvin
{8 d
O e) @)
bkd ofelflio el | ofi ol —sinteto (
D | Q
o) ; ‘

alaftlla=x{rivix

o6 o

Figure 7.2. The Finite Automaton that Checks the
CHDL for Correctness.

g1

{ B Ib$

baC

=P loplulTlw

:: = { b1)sI }

. = bd(x)eA

bml (1,1) 3{ b1)s J
btb1)Sb1)S

bw (x) £P

s bg=S | {bww}i { bk®s }bg=S
c:= a | all] | atx | n | vix)
cro= (X

:o= 1 1,X

LI

il [}

LIt

il

s
W 3 oE M R U g 0w %
i

Non~Terminals Equivalent In Figure 3.1

PG PROGRAM
BLOCK
BLOCKBODY
PROC
DPROC
MPROC
TPROC
WPROC
FIELDZ
FIELD3
DLIST
ORDER~-INFO

M- E DO W R

Terminals

bl

End
tokenized IDs
tokenized LABELs
Decode
tokenized DREGs
as

Mutex

Trigger

While

do

None

tokenized BITS
Null

Wait

HORGe h € ort B M e e O

<%

Table 7.1. The Simplified Grammar

92

Set of BLOCK IDs
BLOCK ID that occur as
process~call
statements in the
block at left

By ¢
B, ¢
B c

u u

Given u blocks with IDs B B

1208y
Let Ci < B, where B = {Bl,...,Bu}

let C = ;cl [1) Cu} a multiset (i.e. a set with some
repeated elements)

If Ci = {Bi }...jB:.L } the following is true for the
1 k inter-block partial ordering:

<B.,B,” ... <B,, Bi E_
1 ll 1 k

Table 7.2, 1Inter-block List.

98

WORST A
1) A
2) B (1)
3) D=S (1)
® ®
® ®
® ® >PROC
N/2) C (1) block
N/2+1) X (2,3,*° ¢ N/2)
[] ®
® @
@ @
N-1)Y (2,3,° °® °,N/2) |
Associated
> Hasse
Diagram

Figure 7.3. A Worst Case Adjacency Structure.

o

i

99

and block ID pair; and the process interaction structure is acyclic. The
special case of a mutual exclusion process is specified so that it repre-
sents just a small departure from the above scheme. It can be regarded
as a set of processes that are each controlled through single ports where
the flow of control through neighboring ports in the set can be mutually

regulated by the setting and resetting of semaphores.

101

—» Process & —»Processq<—
1
R
Pulse 0 1
Signalling 1
A Be
| . | |
Sxmple O | %
Signalling !
A
0
1
R
Reset 0 (’ 2 {
Signalling 1 _I
A \ a4
o)

Fp-5573

Figure 8.1. Some Signalling Conventions.

102

3) Reset signalling: R and A can be tramsitions from 0 to 1 which must
be reset to 0 (see bottom of figure).

Most of the modules have already been designed by Peterson using
reset signalling [Pet 74] and by Patil using simple signalling [Pat 72].
Figure 8.2 shows eight of the ten modules implemented for simple signalling.
The C-element is a one state sequential machine which can be realized by
four (two and three input) NAND gates. (See [Mul 63] and [Mil 65] for a
further discussion of the C-element and speed independent logic, a logic
design methodology that uses simple signalling.) The operation of the
modules in Figure 8.2 can be understood from their behaviors in Chapter 2,
the simple signalling convention shown in Figure 8.1 and the operation
equation of the C-element shown at the bottom of Figure 8.2. (The C-
element retains its previous state as long as its two inputs do not agree
with each other, but tends towards the state of the inputs whenever they
are both the same.) The implementations shown in Figure 8.2 are (except
for the I module) all to be found in [Pat 72}. We have included them to
give an idea of the complexity of a system’s CS at the gate level. The
gate level complexity of the modules when implemented for reset signalling
is of a similar order [Pet 74]. Nobody has designed any of these (S modules
for pulse signalling to our knowledge, although they could be designed
using the techniques of [Kel 74]. For various practical reasons pulse
signalling is not a very good design choice (in particular, maintenance of
pulse integrity makes mono-stables necessary - it has been remarked that
the quality of a design is inversely proportional to the number of mono-
stables it uses). The design philosophy for implementing modules with

simple signalling is discussed in [Den 71}, and general design methods for

104

asynchronous modules are discussed in [Alt 69] and [Rel 74], as was also
noted in Section 2.13. Keller in [Kel 74] also discusses the problem of
multiple signal changes that can occur at the inputs to some of the modules.
In our case this point is relevant to the design of the ME and SR modules
(not shown in Figure 8.2), where it is possible that both input links have
request signals occurring on them simultaneously, each of which requires
a different response. This implies a form of arbitration (the J module
can experience simultaneous input changes, but no arbitration is needed in
its case). Keller presents an arbitration module called the arbitrating
test-and-set (ATS) module that can be used to design the ME module,
Figure 8.3 shows the ATS module and a state diagram describing its behavior.
The ME module can then be implemented for simple signalling as shown in
Figure 8.4. The SR module can be implemented directly from the ME as
shown in Figure 8.5, Implementing the ATS module is not straightforward,
and details can be found in [Kel 74]. 1In particular, the possibility of
multiple input changes (the occurrence of T and R simultaneously in state i)
can cause any implementation to get into a metastable state. This
phenomenon is further discussed in [Cat 66] and [Cha 737.

Constructing the CS of a system as a network of modules creates a
structure which is not readily modified. In many systems the capability
to modify the CS, or the more powerful capability of emulation, is required.
In such cases the CS can be implemented directly from its PN behavior graph
as a programmable logic array [Jum 74] or as a diode array [Pat 75]. The
PN graph can be obtained by first applying the translation procedure of
Chapter 4 to the CHDL program to get the network of modules that form the

CS, then using the Construction 2.1 and the simplifications of Chapter 2 to

construct the CS's PN from each module's PN. Unfortunately both the diode

103

A, A ‘Rz

Muller C- Element

X Operation Equation

z M N (x+y)+xy

y FP-5874

Figure 8.2. Modules using Simple Signalling.

105

T, ———] ATS e

C;ﬂﬂ‘

Initial
State

FP-5575

Figure 8.3. The ATS Module.

106

Ry Ay Rz Az
A A
R R
ATS ATS

FP-5576

Figure 8.4. The ME Module (Simple Signalling).

107

F21 A1 Rz Ao
ME
DN
\ & |
@

A3 R3 FP-5577

Figure 8.5. The SR Module (Simple Signalling).

108

array and the programmable array are very inefficient realizations. The
diode array uses a flip-flop plus additional logic for each place and each
transition in the PN, over and above the diodes. The programmable logic
array uses a flip-flop, a C-element plus additional logic in each pro-
grammable cell of the array, many of which are programmed just to pass
signals between their boundaries without modifying them. Both arrays need
external arbiters to implement the equivalent of the SR and ME modules
(reducing somewhat their facility for being modified). The programmable
array also needs to be able to implement the equivalent of the D and T
modules. This can be done with some simple (also programmable) logic on
the inputs and outputs of the array.

As noted at the beginning of this section, the functional blocks
require additional logic to generate acknowledge signals. To illustrate
how this can be done two examples are shown in Figures 8.6 and 8.7. 1In
both reset signalling is assumed. The first shows a simple register-
transfer in a bus structured environment, and the second a register-
transfer which results in addition or subtraction (Z¢ X+Y). The operation
of the first should be clear from the figure - equivalence gates are used
to detect when the content of the destination register is the same as that
of the source register. The operation of the second is a little more
complicated. It is a modification of a carry completion adder (see [Gsc
75] for details). The outputs of the adder/subtractor that indicate a
carry (C) or no carry (N) are also used to generate the acknowledge signal.
Correct operation is assured only if A does not occur before the result of
the adder/subtractor is latched into the Z register. This need to analyse

the timing of the functional blocks to assure correct operation can lead

109

Destination
Bus
__.
L] &
@ @
L] @
“
€ & @
T T T
@
@ @& e
L 3
é & o
1 Ll
Source ?
@
|
iR LIJA

Logic for T (fransmission gate)

b
| g| b
T O high impedance
1 a
GI g FP-5578
Figure 8.6,

Acknowledge Signal Generation 1.

110

Ci= XY+ C{X;+Y;)

N, = XY, + N (X +Y,)

Full Adder/ Subtractor Unit

Xi+ Xi Xi-]
Yr*‘l Yl Yl‘l
- R
\ A /—-i Yy ¥ /—-1 Y Y
] 1\ MR
1AL A S AL
Y Y Y
Z!+l Zi Zl"’l
R-—- [ey
A
A FP-5579

Figure 8.7. Acknowledge Signal Generation 2.

L

111

to a complex design procedure (the same considerations apply when designing
the CS modules, as is pointed out in [Den 71]; however, the CS modules only
have to be designed once whereas each new CHDL program may have many new
register~-transfers to be designed). The major problem is avoiding delay
hazards which can cause premature acknowledge signals to occur., A
systematic method of design which results in designs that are free of
delay hazards uses a spacer word between each data word.* Unger in [Ung
69] discusses this design method in detail. Although such a systematic
approach to DS design is desirable, the loss in throughput rate as a
result of including spacer words every other word in the data flow brings
into question the speed-up gained at the register-transfer level by
operating asynchronously. It should be born in mind that only register-
transfers whose time of operation are very data dependent (i.e. not simple
"move contents of register A to register B" type register-transfers) result
in a faster average time of operation by indicating their own completion
rather than having the DS assume a worst case bound.

One final note on the asynchronous implementation concerns fault
tolerance. 1If the CS modules are implemented for simple signalling, any
CS constructed from them will automatically halt if a stuck-at fault occurs
on the wires connecting the NOTs, ECQRs, C-elements and ATS modules to-
gether, If the CS modules are implemented for a reset signalling using
the designs given in [Pet 74], any CS constructed from them will halt if
a stuck-at fault occurs on the wires interconnecting the modules. To make

the DS fault tolerant many of the usual schemes can be used (see [Sel 68]

*Arrival of a spacer word at the output of a functional block indicates
that the combinational logic has been flushed of any delayed logic signals
and, hence, is ready to receive new input data.

112

for examples). However, using m-out-of-n codes offers some interesting
bonuses, as the self-checking checkers that can be devised for such codes
(see [Smi 77] for more details) can also be used to generate acknowledge
signals. 1If a fault causes a non-codeword, or the checker fails, no

acknowledge signal is returned to the CS resulting in its halting.

8.2 Pseudo-asynchronous Implementation

In the previous section we noted some drawbacks associated with
asynchronous implementation. These were:

1) The DC can be difficult to design because acknowledge

signal generation must be implemented. Furthermore,
solutions to this problem do not lend themselves to
efficient realization in standard logic families, as these
are oriented towards synchronous environments.

2) The CS cannot be implemented efficiently in a way that it

can be readily modified.

3) Simultaneous multiple input changes on ME and SR modules

can result in non-standard operation of logic elements
used in their implementation.

These drawbacks can be overcome by using a central clock to regulate
signal changes within a system, while still retaining the essentially
asynchronous action described by the CHDL. We use the term pseudo-
asynchronous (PA) to describe such implementations.

The system model for PA implementation is shown in Figure 8.8. It
is based on one proposed by Glushkov in [Glu 65] and comprises two
cooperating finite state machines. One, the CS, is a Mealy machine, and
the other, the DS, is a Moore machine. The inputs to the CS are shown

as the vector X,and they represent information about the state of the DS.

113

 {CiocH
81 <
] ®
® ® CS
e ° (A Mealy
Sn :J Machine)
Tl cC
"I (Combinational
__t:::::> Logic)
L~ N/
X y
\/
Inputs DS Outputs
to _ > from
System (A Moore Machine) System

FP-5580

Figure 8.8. The PA System Model.

114

Based on this information and on its own state (given by 1 through Sn)
the CS machine outputs a set of control signals, shown as the vector Y.
These are gating signals for synchronous register-transfers. No acknow-
ledge signals are generated by the DS logic; instead each register-
transfer is allocated a fixed number of basic clock cycles. The number
allocated is based on the worst case time for the register-transfer.

Recalling the list of drawbacks associated with the asynchronous

implementation, we see that the above PA model overcomes them as follows:

1) The DS no longer needs to include acknowledge signal logic
and can be constructed in an efficient way from available
logic families with the aid (if necessary) of the many
automatic design packages aimed at conventional functional
block implementation.

2) The CS can be made easy to modify by realizing C (see
Figure 8.8) as a PLA, a ROM, or, if frequent emulation
is required, a RAM.

3) The multiple input change problem, that can result in non-
standard operation of logic elements does not occur in a
synchronous environment. However, the problem still occurs
at the interface between the system and its environment,
since signals that meet at this boundary are asynchronous
with respect to one another.

Nevertheless, using a PA implementation has drawbacks of its own.

These are as follows:
1) Operations at the register-transfer level take a fixed

worst case time period.

115

2) The fault tolerance of the asynchronous implementation
to many stuck-at faults is lost.

3) Consideration must be given to the layout of the logic

gates, so that clock skewing, due to line delays, does
not occur. Layout (in particular maximum line length)
also limits the speed of the clock and hence of the system.

Without going into a general translation technique we shall present
some examples of how the Mealy machine that implements the CS of a system
described by a CHDL program can be derived from that program.

The states of the CS(sl through sn) are held in a set of master-
slave JK flip-flops (JKFF). Figure 8.9 shows the PA signalling convention.
In the case of a register-transfer there is no acknowledge - a counter
is used to measure the time out for the register~-transfer, and completion
of the count serves in lieu of an acknowledge. (The truth table of the
JKFF is included in Figure 8.9 for convenience.)

A logic circuit useful in understanding the examples that follow
is the "sequential AND" ($). 1Its operation is shown in Figure 8.10. Its
diagrammatic representation is shown at the top, its logic realization
is shown in the center, and a timing diagram showing its operation under
the three possible sets of inputs is shown at the bottom. It outputs a
signal on z after ome has occurred on both x and y. (We assume that any
two consecutive signals on x (y) are separated by one on Y(9).)

Figure 8.11 shows the PA implementation of the CS of a PROC block.
Fach statement is associated with at least one JKFF. The JKFFs are the
boxes labelled P, 1, 2, 3.1, 3.2 and 4. For clarity the clock lines are

omitted, the input at the top of each box is assumed to be J, and the

116

+1
J K | qQ
—J Q> o o | q
—> B o 1 0
K _Q 1 O]
1 1 | q
Clock

Clock r P n

R G D SRETRCUE S

FP-5581

Figure 8.9. PA Signalling Conventions.

117

X =P

y-—-—-———>

'S

x
ol

Clock

Clock | [[] [[)

FP-5582

Figure 8.10. The Sequential And.

118

PBLOCK
1) R1<R2
2) MBLOCK [1]
3) AC<~AC + R2 (1,2)
4) DBLOCK (2)

Rl1-<R2 MBLOCKR MBLOCKA AC<+ AC+R2 DBLOCKR DBLOCKA
P *
o1 lery J’@ @1 1®

| BY B

A

~

] A
r’® <

Figure 8.11. PA Implementation of a PROC Block.

119

output at the top of each box is assumed to be Q. A signal (see R,
Figure 8.9) at I starts the machine we have called PBLOCK by gating a
register-transfer, Rl1+ R2, initiating another machine called MBLOCK with
signal MBLOCKR, and setting the JKFFs P, 1 and 2. A set JKFF P indicates
that machine PBLOCK is active, a set JKFF 1 indicates that the register-
transfer R1 ¢ R2 is active, and a set JKFF 2 indicates that machine MBLOCK
is active. JKFF 1 is reset after one clock period: this is the time for
operation allocated to the register-transfer. JKFF 2 is reset after the
inputs to the AND gate J go to logic 1. These are labelled MBLOCKA and
are the 6 outputs from the JKFFs that would be used to implement the CS
of MBLOCK. (They stand in the same relation to 2 as the inputs to AND
gate K stand to P.) The signal MBLOCKR corresponds to R of Figure 8.9,
and the outputs of AND gate J correspond to A of Figure 8.9. The
register-transfer AC+ AC+1 receives a gating signal from the output of
the $§ gate as soon as either the MBLOCK machine is done, or the time
allocated the register-transfer R1+R2 is up, whichever takes longest.
The register-transfer is allocated two clock periods to complete, which
are counted by JKFFs 3.1 and 3.2. The signal from J also starts
machine DBLOCK, setting JKFF as it does so. When DBLOCK is done
JKFF 4 is reset in a similar fashion to JKFF 2. When PBLOCK is dome the
JKFFs 1,2,3,1, 3.2 and 4 are reset. This enables AND gate K which causes
P to be reset after the next clock pulse. A reset JKFF P indicates
that PBLOCK is done.

Figure 8.12 shows the PA implementation of the CS of a DPROC block.
Its operation should be clear from the previous discussion. The combinational

logic with inputs X, and X directs the start signal to the appropriate

120

DBLOCK
ABCR ABCA Decode (XIXO) as
A 00 = ABC
1l = RO=—RIl

None = Null
. A NONE Nulb
»

'RO=<—R1

—
| "

] FP- 5584

Y

Figure 8.12. ©PA Implementation of a DPROC Block.

121

submachine. Notice that the register-transfer RO« Rl has been allocated
two clock periods. 1In the case of xl@ XO=1 JKFF D is set and then reset
after the following clock pulse - a Null process.

Figure 8.13 shows the PA implementation of the €S of a WPROC block.
Again, its operation should be clear from the previous discussion. The
output signal from AND gate L is used to reinitiate the machine if y=1
is true.

Figure 8.15 shows the PA implementation of the CS of a TPROC block.
The inclusion of the $ gate with its JKFF initially set (see Figure 8.10)
allows machine XYZ to be active while the process of which TBLOCK
(represented by JKFF T in the implementation) is a part, may be reinitiated.
This reinitiation may proceed until just before TBLOCK. It must then

wait until XYZ is done. Thus the overlap never goes beyond one level.

Figure 8.14 shows the PA implementation of the CS of an MPROC block.

We have arbitrarily given priority to process TWO. This is determined

by gate M.

In a complete CS, many of the JKFFs are redundant. The only
essential ones are those associated with $ gates and the register~transfer
timing. The redundant ones can be eliminated or retained for use in

system diagnosis. The JKFFs which form the state vector, s. through 5.

1
may be regarded as a control status word (CSW) which must be initialized
to start the machine (usually most of the JKFFs are reset, but those in
$ gates associated with TPROCs are set). This CSW may also be set to
intermediate values as part of a diagnostic routine.

It can be seen from this brief sketch of PA implementation that

many of the characteristics of the asynchronous model are retained,

122

WBLOCK
While (y) do

1) RED

2) GREEN

3) BLUE (1,2)

REDgr REDs GREENg GREENay BLUER BLUEA

H A

O Ot 2 ©

—

FP-5585

Figure 8.13. PA Implementation of a WPROC Block.

123

Trigger
1)ABC
2)XYZ

O Pe

-

JKFF in this is
inifially seft FP-5586

—t i | f—————

Figure 8.14. PA Implementation of a TPROC Block.

124

MBLOCK
Mutex (1,2)

1) ONE
2) TWO

ONE, ONE, TWO, TWOg

el

M

O % Yy |®

-

FP- 5587

Figure 8.15. PA Implementation of a MPROC Block.

125

except that time is now defined discretely. The PN graph model of behavior
still applies, as do the conclusions of Chapters 6 and 7. Hence PA
implementations are also deadlock-free.

Finally, we make a concluding observation. 1If our finite state
machine were designed using a state table, the notion of deadlock would not
arise. It would be easy enough to ensure that no trap states exist. How-
ever, this method is all but impossible for any but the simplest machine.
Hence, other representations and methods are required to design the finite
state machine. With these the notion of deadlock arises. 1In a sense then,
deadlock can be viewed as a function of the methods used to design and

represent the machine.

126

9. COMPARISONS TO OTHER CHDLS AND OTHER APPLICATIONS

In this chapter other applications of some of the ideas developed
in this thesis, as a result of specifying the CHDL, are discussed. Also,

our approach to CHDLs is compared to others.

9.1 Other Applications

Several people have suggested the use of fork, join and quit operations
(or their equivalent) for use in high level programming languages to enable
programmers to write programs in which the potential for multiprocessing
can be explicitly communicated to the compiler (see [Con 63], [And 65], [Opl
65] and [Den 66]). The use of fork is analogous to the effect of a W
module on the flow of control, and the use of join and quit is analogous
to the effect of a J module on the flow of control.

These operations allow the programmer to specify a control flow which
can deadlock. By adopting a programming discipline similar to the one we
have used in the syntax of the CHDL, such situations can be avoided.

Many programmers consider that the use of fork, join and quit in high
level programming languages obscures the underlying algorithm, that a
program specifies, by representing the algorithm in a non-sequential fashion
(see [Wir 66]). To accommodate this criticism and still retain the capa-
bility of multiprocessing, it is necessary to automatically detect segments
of a program that can be executed concurrently and have some mechanism at
the assembly language level, or at the firmware level, for expressing con-

currency. If this mechanism uses operations similar to fork, join and quit,

we can again impose a discipline on usage to ensure that control flow does

not deadlock. As a footnote to this discussion on programming language

127

constructs that facilitate multiprocessing, it is interesting to note that
the MPROC block of the CHDL is analogous to a simple form of monitor
(see [Hoa 74]).

Finally, there are two obvious candidates for any design methodology
that includes something similar to the CHDL. These are the RTMs (Register-
transfer modules) of the Digital Electronics Corporation (see [Bel 72]),
and the Macromodules of Washington University (see [Cla 67]). Both of
these are sets of asynchronous modules which contain elements of both CS
and DS, that can be interconnected to form custom systems. The types of CS
that they can produce are similar to those possible with the CS modules of
Chapter 2. Hence, there is a need for an interconnection discipline, that
could be imposed by a CHDL, to ensure that control flow does not deadlock.
In the case of the RTMs, some researchers have suggested a design methodo-
logy that involves designing the target system as an interconnection of
RTMs, then analyzing the resulting control flow using PNs (see [Hue 75]).
Such an approach leads, in general, to complex analyses just to confirm
that the control flow is free of potential deadlock. A further drawback
also results, in that such analyses do not indicate how to correctly re-

design a system which has been found to have a potential deadlock.

9.2 Comparisons to Other CHDLs

There are currently no CHDLs that are suitable for specifying multi-
processing systems. The major weakness of present CHDLs, in this respect,
is the very limited nature of the CSs that they can describe. As a case in
point, consider two of the most popular CHDLs, viz. ISP (see [Bel 711) and
AHPL (see [Hil 73]). Both have only very simple CS constructs. To use
either of them to describe overlapping or mutually exclusive processes

would be awkward, as all of the coordination would have to be done through

L

128

a system of flags declared in the DS. Furthermore, they can only describe
simple series/parallel type concurrency. Nevertheless, they could easily
be improved, from a multiprocessing point of view, by adding a few
appropriate constructs: semaphores; queues in the control flow; a more
flexible method of representing concurrency. There is an early example of
a CHDL which comes closer to being suitable for specifying multiprocessing
systems, and that is the Computer Compiler (see [Met 66]}). This, however,

can describe systems with potential deadlock in their CS.

129

10. CONCLUSION

To recapitulate, the two major purposes of this thesis were:

L. To develop a CHDL with sufficient scope to describe multiprocessing

systems.

2. To specify the CHDL so that SC programs describe systems which

have deadlock-free (CSs.

A CHDL was developed in Chapters 2, 3, and 4, and it was shown in
Chapters 6 and 7 that it does, in fact, achieve these purposes. To motivate
the use of the CHDL it was used to design a small system in Chapter 5. Actual
gate level implementations, both asynchronous and synchronous, were discussed
in Chapter 8. Chapter 9 discussed some extensions of the thesis and commented
on other work.

One general point of note is the hierarchical nature of the CHDL that
was pointed out throughout this thesis. This follows as a consequence of
the observation made in Chapter 6, viz. that the CHDL satisfies the Structure
Theorem of [Mil 72] and, hence, the Top Down Corollary: programs can be
written or read top down. For the user this means there is a convenient
relationship between the CHDL text (static) and the intended operation of
the system it describes (dynamic).

In the system model of Figure 1.1 we viewed a digital system as composed
of a CS and DS. This thesis has been concerned mainly with the CS aspects
of a CHDL. Further research could be carried out on the DS aspects of a
CHDL, with special reference to the needs of multiprocessing. As was noted
in Section 5.3, a formalism for data type definition is needed that is suit-
able for hardware data objects (busses, registers, subfields of registers,

etc.). Of particular interest would be a method which, aided by the

130

formalism for data definition, would facilitate the design of systems with
deterministic DSs. There are two approaches that may be taken. The first
is preventative, i.e. specify the CHDL so that it cannot describe non-
deterministic systems. This is the approach that we have adopted in regard
to deadlock. The second is curative, i.e. the DS is examined, after the
design process, for sources of non-determinism. In the opinion of the
author, prevention is better than cure, but it should not be undertaken to

the point of limiting the scope of a CHDL until it becomes useless.

Alt

Alt

And

And

Aze

Bar

Bel

Bel

Cat

Cha

Cla

Com

Con

69

70

oy
o

75

75

71

66

73

67

71

63

131

REFERENCES

Altman, S. M., and A. W. Lo, "Systematic Design for Modular
Realization of Control Modules,' 1969 SJCC, AFIPS Conf. Proc.,
Vol. 34, pp. 587-595, 1969.

Altman, S. M., and P. J. Denning, "Decomposition of Control
Networks,'" Rec. of the Proi. MAC Conf. on Concurrent Systems
and Parallel Computation, pp. 81-92, 1970.

Anderson, J. P., "Program Structures for Parallel Processing,”
CACM, Vol. 8, No. 12, pp. 786-788, Dec. 65.

Anderson, D. W., F. J. Sparacio, and R. M. Tomasulo, "The IBM
System/360 Model 91: Machine Philosophy and Imstruction-Handling,"
IBM Jour. of R&D, Vol. 11, No. 1, pp. 8-24, Jan. 67,

Azema, P., M. Diaz, and J. E. Doucet, '"Multilevel Description
Using Petri Nets,” Proc, 1975 Int. Symp. on Computer Hardware
Description Languages and their Applications, pp. 188-190,
Sept. 75.

Barbacci, M. R., "A Comparison of Register Transfer Languages for
Describing Computers and Digital Systems," IEER TC, Vol. C-24,
No. 2, pp. 137-1530, Feb. 75.

Bell, C. G., and A. Newell, Computer Structures: Readings and
Examples, McGraw-Hill, New York, 71.

Bell, €. G., J. L. Eggert, J. Grason, and P. Williams, "The
Description and Use of Register-transfer Modules (RTM s),”
IEER TC, Vol. C-21, No. 5, pp. 495-500, May 72.

Bruno, J., and S. Altman, "A Theory of Asynchronous Control
Networks,' IEEE TC, Vol. C¢-20, No. 6, pp. 629-638, Jun. 71.

Catt, T., "Iime Loss Through Gating of Asynchronous Logic Signal
Pulses,’ IEEE TC, Vol. EC-15, No. 1, pp. 108-111, Feb. 66.

Chaney, T. J., and C. E. Molnar, "Anomalous Behavior of Synchronizer
and Arbiter Circuits,® IEEE TC, Vol. £-22, No. 4, pp. 421-422,
Apr. 73.

Clark, M. A., "Macromodular Computer Systems," 1967 SJICC, AFIPS
Conf. Proc., Vol. 30, pp. 335-336, 1967.

Commoner, F., A. W. Holt, S. Even, and A. Pnueli, "Marked Directed
Graphs," J. Comput. Syst. Sci., Vol. 5, pp. 511-523, 1971.

Conway, M. E., "A Multiprocessor System Design,' 1963 FJCC, AFIPS
Conf. Proc., Vol. 24, pp. 139-146, 1963.

Den

Den

Den

Fal

Fra

Fri

Fri

Glu

Gsc

Hei

Hil

Hoa

Hol

66

70

71

64

73

75

67

69

75

76

73

74

68

132

Dennis, J. B., and E. C. Van Horn, "Programming Semantics for Multi-
programmed Computations,' CACM, Vol. 9, No. 3, pp. 143-155, Mar. 66.

Dennis, J. B., '"Modular, Asynchronous Control Structures for a High
Performance Processor,"” Rec. of the Proj. MAC Conf. on Concurrent
Systems and Parallel Computation, pp. 55-80, 1970.

Dennis, J. B., and S. S. Patil, "Speed Independent Asynchronous
Circuits,' Proc. 4-th Hawaii Int, Conf. on Syst. Sci., pp. 55-58,
1971.

Falkoff, A. D., E. E. Iverson, and E. H. Sussenguth, "A Formal
Description of System/360," IBM Syst. Jour., Vol. 3, No. 3, pp.
198~262, 1964.

Figueroa, M. A., Analysis of Languages for the Design of Digital
Computers, CSL Report R-611, May 73.

Franta, W. R., and W. K. Giloi, "APL*DS: A Hardware Description
Language for Design and Simulation,' Proc. 1975 Int. Symp. on
Computer Hardware Description Languages and their Applications,
pp. 45-52, Sept. 75.

Friedman, T. D., "ALERT: A Program to Compile Logic Designs of
New Computers,' Digest 1st Annual IEEE Comp. Conf., pp. 128-130,
Sept. 67.

Friedman, T. D., and S. C. Yang, '"Methods Used in an Automated
Logic Design Generator (ALERT),'" IEEE TC, Vol. C-18, No. 7,
pp. 593-613, Jul. 69.

Glushkov, V. M., "Automata Theory and Structural Design Problems
of Digital Machines," Kibernetica, Vol. 1, No.l, pp. 3-11, 1965.

Gschwind, H. W., and E. J., McCluskey, Design of Digital Computers,
Springer~-Verlag, New York, 1975.

Heimerdinger, W. L., and L. A. Jack, "A Graph Theoretic Approach
to Fault Tolerant Computing,' 1975-76 Annual Report AFQSE
Contract No, F44620-75-C-0053, Mar. 22, 1976.

Hill, ¥. J., and G. R. Peterson, Digital Systems: Hardware
Organization and Design, New York, 1973.

Hoare, C.A.R., "Monitors: An Operating System Structuring Concept,"
CACM, Vol. 17, No. 10, Oct. 74.

Holt, A. W., Final Report of the Information System Theory Project,
Tech. Report RADC-TR-68-305, Rome Air Development Center, New York,
1968.

Hue 75

Jum 73

Jum 74

Kel 74

Knu 69

Knu 73

Knu 74

Met 66

Mil 65

Mil 72

Mud 75

Mud 77

Mul 63

Pat 72

Pat 75

133

Huen, W. H., and D. P. Siewiorek, "Intermodule Protocol for
Register Transfer Level Modules: Representation and Analytic
Tools," Proc, Z2-und Annual Symp. on Computer Architecture,
Houston, TX., Feb. 75.

Jump, J. R., and P. S. Thiagarajan, "On the Equivalence of
Asynchronous Control Structures,' SIAM Jour. Comp., Vol. 2,
No. 2, pp. 67-87, Jun. 73.

Jump, J. R., "Asynchronous Control Arrays,' IEEE TC, Vol. c-23,
No. 10, pp. 1020-1029, Oct. 74.

Keller, R. M., "Towards a Theory of Universal Speed-Independent
Modules," IEEE TC, Vol. C-23, No. 1, pp. 21-33, Jan. 74,

Knuth, D. E., The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, Addison-Wesley, Reading, MA, 1969.

Knuth, D. E., The Art of Computer Programming, Vol. 3: Sorting
and Searching, Addison-Wesley, Reading, MA, 1973.

Knuth, D. E., "Structured Programming with goto Statements,'
Computing Surveys, Vol. 6, No. 4, Dec. T4.

Metze, G., and S. Seshu, "A Proposal for a Computer Compiler,”
1966 SJCC, AFIPS Conf. Proc., Vol. 21, pp. 121-129, 1966 .

Miller, R. E., Switching Theory, Vol. II, John Wiley, New York,
1965. ‘

Mills, H., Mathematical Foundation for Structured Programming,
FSC72-6012, Federal Systems Division, IBM Corp., Gaithersburg, MD,
Feb., 72.

Mudge, T., "Specifying a Design Language for Digital Systems,"
Proc. 13-th Annual Allerton Conf. on Circuit and System Theory,
pp. 905-915, Oct. 75.

Mudge, T., A Design Language for Modular Asvnchronous Control
Structures, CSL Report R-759, Feb. 77.

Muller, D. E., '"Asynchronous Logics and Application to Information
Processing,’ Switching Theory in Space Technology, Stanford Univ.
Press, Stanford, CA, 1963.

Opler, A., "Procedure-Oriented Language Statements to Facilitate
parallel Processing,'™ CACM, Vol. 8, No. 5, May 65.

patil, S. S., and J. B. Dennis, ''The Description and Realization
of Digital Systems,'" COMPCON 72, Proc. TEEE Comp. Conf., pp. 313~
316, Sept. 72.

Patil, S. S., An Asynchronous Logic Array, Comp. Structures Group
Memo 111-1, Proj. MAC, MIT, Feb. 5.

